[test] update time series test scripts
Browse files- 0092638_seism.npy +3 -0
- test_inference_ts.py +78 -0
0092638_seism.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c2b94653c6964b630038897a27cb6d276ff866d9ecd1f6419358b9407f0df62e
|
| 3 |
+
size 72128
|
test_inference_ts.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoProcessor
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
model_path = Path(__file__).parent.resolve()
|
| 7 |
+
print(f"Loading model from: {model_path}")
|
| 8 |
+
|
| 9 |
+
# 加载模型配置
|
| 10 |
+
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
| 11 |
+
print(f"Model config: {config.model_type}")
|
| 12 |
+
print(f"Architecture: {config.architectures}")
|
| 13 |
+
|
| 14 |
+
# 加载处理器(tokenizer + image processor + ts processor)
|
| 15 |
+
print("\nLoading processor...")
|
| 16 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
| 17 |
+
|
| 18 |
+
# 加载模型(使用 bfloat16 精度和自动设备映射)
|
| 19 |
+
print("\nLoading model...")
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
+
model_path,
|
| 22 |
+
dtype=torch.bfloat16,
|
| 23 |
+
device_map="auto",
|
| 24 |
+
# attn_implementation="flash_attention_2", #时序暂不支持flash_attn,load加这行会报错
|
| 25 |
+
trust_remote_code=True
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
print(f"✓ Model loaded successfully!")
|
| 29 |
+
print(f"Model type: {type(model).__name__}")
|
| 30 |
+
print(f"Model device: {model.device}")
|
| 31 |
+
|
| 32 |
+
# ============================================================================
|
| 33 |
+
# 测试 3: 时序对话
|
| 34 |
+
# ============================================================================
|
| 35 |
+
print("\n" + "=" * 80)
|
| 36 |
+
print("测试 3: 时序对话")
|
| 37 |
+
print("=" * 80)
|
| 38 |
+
|
| 39 |
+
messages = [
|
| 40 |
+
{
|
| 41 |
+
"role": "user",
|
| 42 |
+
"content": [
|
| 43 |
+
{"type": "time_series", "data": "./0092638_seism.npy", "sampling_rate": 100},
|
| 44 |
+
{"type": "text", "text": "Please determine whether an Earthquake event has occurred in the provided time-series data. If so, please specify the starting time point indices of the P-wave and S-wave in the event."},
|
| 45 |
+
],
|
| 46 |
+
}
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
time_series_inputs = processor.time_series_preprocessor(messages)
|
| 50 |
+
multimodal_inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", enable_thinking=False, **time_series_inputs).to(model.device, dtype=torch.bfloat16)
|
| 51 |
+
|
| 52 |
+
print("\n生成时序回复...")
|
| 53 |
+
with torch.inference_mode():
|
| 54 |
+
multimodal_generated_ids = model.generate(
|
| 55 |
+
**multimodal_inputs,
|
| 56 |
+
max_new_tokens=200,
|
| 57 |
+
do_sample=False,
|
| 58 |
+
temperature=1.0,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# 提取生成的 token(去除输入部分)
|
| 62 |
+
multimodal_generated_ids_trimmed = [
|
| 63 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(multimodal_inputs.input_ids, multimodal_generated_ids)
|
| 64 |
+
]
|
| 65 |
+
|
| 66 |
+
# 解码为文本
|
| 67 |
+
multimodal_output = processor.batch_decode(
|
| 68 |
+
multimodal_generated_ids_trimmed,
|
| 69 |
+
skip_special_tokens=True,
|
| 70 |
+
clean_up_tokenization_spaces=False
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
print("\n" + "-" * 80)
|
| 74 |
+
print("时序输出:")
|
| 75 |
+
print("-" * 80)
|
| 76 |
+
print(multimodal_output[0])
|
| 77 |
+
print("-" * 80)
|
| 78 |
+
print("\n✅ 时序功能测试完成!")
|