# Forge Coder v1.21.11 A specialized code generation model fine-tuned for Minecraft Forge mod development. ## Model Details | Property | Value | |----------|-------| | **Base Model** | deepseek-ai/deepseek-coder-6.7b-instruct | | **Fine-tuning Method** | LoRA (r=64, alpha=128) | | **Trainable Parameters** | 159.9M (2.3% of total) | | **Forge Version** | 1.21.11 | | **Minecraft Version** | 1.21.11 | | **MCP Version** | 20251209.095502 | ## Training Data - **Source Code**: 27 popular Forge mod repositories - **Documentation**: Official Forge documentation - **Total Java Files**: 22,916 - **Training Samples**: 13,936 - **Validation Samples**: 734 ### Included Mods Applied Energistics 2, JustEnoughItems, TerraFirmaCraft, Mekanism, Create, Thermal Expansion/Foundation, RFTools, Botania, Quark, Tinkers' Construct, Immersive Engineering, Twilight Forest, and more. ## Training Metrics | Metric | Value | |--------|-------| | Training Time | 9h 12m | | Final Train Loss | 0.27 | | Final Eval Loss | 0.325 | | Token Accuracy | 92.5% | | Epochs | 3 | ## Capabilities The model is specialized in: - Block and Item creation - Entity programming - GUI/Screen development - Network packet handling - World generation - Event handling - Registry systems - Capability API - Recipe systems - Rendering code - Data generation ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel base_model = "deepseek-ai/deepseek-coder-6.7b-instruct" adapter_path = "path/to/forge-coder-v1.21.11" tokenizer = AutoTokenizer.from_pretrained(adapter_path) model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=torch.bfloat16) model = PeftModel.from_pretrained(model, adapter_path) prompt = """### System: You are an expert Minecraft Forge mod developer. ### User: Write a simple custom block class for Minecraft Forge 1.21.11 ### Assistant: """ inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=512) print(tokenizer.decode(outputs[0])) ``` ## Version History - **v1.21.11** (2024-12-18): Initial release for MC 1.21.11 / Forge 1.21.11 ## License This model is released under the same license as the base model (deepseek-coder). Training data sourced from open-source repositories under various permissive licenses.