hwding commited on
Commit
7572a81
·
verified ·
1 Parent(s): 164558b

Upload folder using huggingface_hub

Browse files
Files changed (46) hide show
  1. MODEL_CARD.md +88 -0
  2. README.md +62 -0
  3. adapter_config.json +46 -0
  4. adapter_model.safetensors +3 -0
  5. chat_template.jinja +26 -0
  6. checkpoint-1000/README.md +209 -0
  7. checkpoint-1000/adapter_config.json +46 -0
  8. checkpoint-1000/adapter_model.safetensors +3 -0
  9. checkpoint-1000/chat_template.jinja +26 -0
  10. checkpoint-1000/optimizer.pt +3 -0
  11. checkpoint-1000/rng_state.pth +3 -0
  12. checkpoint-1000/scheduler.pt +3 -0
  13. checkpoint-1000/special_tokens_map.json +17 -0
  14. checkpoint-1000/tokenizer.json +0 -0
  15. checkpoint-1000/tokenizer_config.json +194 -0
  16. checkpoint-1000/trainer_state.json +1056 -0
  17. checkpoint-1000/training_args.bin +3 -0
  18. checkpoint-1500/README.md +209 -0
  19. checkpoint-1500/adapter_config.json +46 -0
  20. checkpoint-1500/adapter_model.safetensors +3 -0
  21. checkpoint-1500/chat_template.jinja +26 -0
  22. checkpoint-1500/optimizer.pt +3 -0
  23. checkpoint-1500/rng_state.pth +3 -0
  24. checkpoint-1500/scheduler.pt +3 -0
  25. checkpoint-1500/special_tokens_map.json +17 -0
  26. checkpoint-1500/tokenizer.json +0 -0
  27. checkpoint-1500/tokenizer_config.json +194 -0
  28. checkpoint-1500/trainer_state.json +1567 -0
  29. checkpoint-1500/training_args.bin +3 -0
  30. checkpoint-1848/README.md +209 -0
  31. checkpoint-1848/adapter_config.json +46 -0
  32. checkpoint-1848/adapter_model.safetensors +3 -0
  33. checkpoint-1848/chat_template.jinja +26 -0
  34. checkpoint-1848/optimizer.pt +3 -0
  35. checkpoint-1848/rng_state.pth +3 -0
  36. checkpoint-1848/scheduler.pt +3 -0
  37. checkpoint-1848/special_tokens_map.json +17 -0
  38. checkpoint-1848/tokenizer.json +0 -0
  39. checkpoint-1848/tokenizer_config.json +194 -0
  40. checkpoint-1848/trainer_state.json +1907 -0
  41. checkpoint-1848/training_args.bin +3 -0
  42. model_info.txt +7 -0
  43. special_tokens_map.json +17 -0
  44. tokenizer.json +0 -0
  45. tokenizer_config.json +194 -0
  46. training_args.bin +3 -0
MODEL_CARD.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Forge Coder v1.21.11
2
+
3
+ A specialized code generation model fine-tuned for Minecraft Forge mod development.
4
+
5
+ ## Model Details
6
+
7
+ | Property | Value |
8
+ |----------|-------|
9
+ | **Base Model** | deepseek-ai/deepseek-coder-6.7b-instruct |
10
+ | **Fine-tuning Method** | LoRA (r=64, alpha=128) |
11
+ | **Trainable Parameters** | 159.9M (2.3% of total) |
12
+ | **Forge Version** | 1.21.11 |
13
+ | **Minecraft Version** | 1.21.11 |
14
+ | **MCP Version** | 20251209.095502 |
15
+
16
+ ## Training Data
17
+
18
+ - **Source Code**: 27 popular Forge mod repositories
19
+ - **Documentation**: Official Forge documentation
20
+ - **Total Java Files**: 22,916
21
+ - **Training Samples**: 13,936
22
+ - **Validation Samples**: 734
23
+
24
+ ### Included Mods
25
+ Applied Energistics 2, JustEnoughItems, TerraFirmaCraft, Mekanism, Create,
26
+ Thermal Expansion/Foundation, RFTools, Botania, Quark, Tinkers' Construct,
27
+ Immersive Engineering, Twilight Forest, and more.
28
+
29
+ ## Training Metrics
30
+
31
+ | Metric | Value |
32
+ |--------|-------|
33
+ | Training Time | 9h 12m |
34
+ | Final Train Loss | 0.27 |
35
+ | Final Eval Loss | 0.325 |
36
+ | Token Accuracy | 92.5% |
37
+ | Epochs | 3 |
38
+
39
+ ## Capabilities
40
+
41
+ The model is specialized in:
42
+ - Block and Item creation
43
+ - Entity programming
44
+ - GUI/Screen development
45
+ - Network packet handling
46
+ - World generation
47
+ - Event handling
48
+ - Registry systems
49
+ - Capability API
50
+ - Recipe systems
51
+ - Rendering code
52
+ - Data generation
53
+
54
+ ## Usage
55
+
56
+ ```python
57
+ from transformers import AutoModelForCausalLM, AutoTokenizer
58
+ from peft import PeftModel
59
+
60
+ base_model = "deepseek-ai/deepseek-coder-6.7b-instruct"
61
+ adapter_path = "path/to/forge-coder-v1.21.11"
62
+
63
+ tokenizer = AutoTokenizer.from_pretrained(adapter_path)
64
+ model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=torch.bfloat16)
65
+ model = PeftModel.from_pretrained(model, adapter_path)
66
+
67
+ prompt = """### System:
68
+ You are an expert Minecraft Forge mod developer.
69
+
70
+ ### User:
71
+ Write a simple custom block class for Minecraft Forge 1.21.11
72
+
73
+ ### Assistant:
74
+ """
75
+
76
+ inputs = tokenizer(prompt, return_tensors="pt")
77
+ outputs = model.generate(**inputs, max_new_tokens=512)
78
+ print(tokenizer.decode(outputs[0]))
79
+ ```
80
+
81
+ ## Version History
82
+
83
+ - **v1.21.11** (2024-12-18): Initial release for MC 1.21.11 / Forge 1.21.11
84
+
85
+ ## License
86
+
87
+ This model is released under the same license as the base model (deepseek-coder).
88
+ Training data sourced from open-source repositories under various permissive licenses.
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/deepseek-coder-6.7b-instruct
3
+ library_name: peft
4
+ model_name: forge-coder-v1.21.11
5
+ tags:
6
+ - base_model:adapter:deepseek-ai/deepseek-coder-6.7b-instruct
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ licence: license
12
+ pipeline_tag: text-generation
13
+ ---
14
+
15
+ # Model Card for forge-coder-v1.21.11
16
+
17
+ This model is a fine-tuned version of [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct).
18
+ It has been trained using [TRL](https://github.com/huggingface/trl).
19
+
20
+ ## Quick start
21
+
22
+ ```python
23
+ from transformers import pipeline
24
+
25
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
26
+ generator = pipeline("text-generation", model="None", device="cuda")
27
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
28
+ print(output["generated_text"])
29
+ ```
30
+
31
+ ## Training procedure
32
+
33
+
34
+
35
+
36
+ This model was trained with SFT.
37
+
38
+ ### Framework versions
39
+
40
+ - PEFT 0.18.0
41
+ - TRL: 0.26.1
42
+ - Transformers: 4.57.3
43
+ - Pytorch: 2.5.1+cu121
44
+ - Datasets: 4.4.1
45
+ - Tokenizers: 0.22.1
46
+
47
+ ## Citations
48
+
49
+
50
+
51
+ Cite TRL as:
52
+
53
+ ```bibtex
54
+ @misc{vonwerra2022trl,
55
+ title = {{TRL: Transformer Reinforcement Learning}},
56
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
57
+ year = 2020,
58
+ journal = {GitHub repository},
59
+ publisher = {GitHub},
60
+ howpublished = {\url{https://github.com/huggingface/trl}}
61
+ }
62
+ ```
adapter_config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "deepseek-ai/deepseek-coder-6.7b-instruct",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 128,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 64,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "q_proj",
33
+ "v_proj",
34
+ "gate_proj",
35
+ "k_proj",
36
+ "up_proj",
37
+ "o_proj",
38
+ "down_proj"
39
+ ],
40
+ "target_parameters": null,
41
+ "task_type": "CAUSAL_LM",
42
+ "trainable_token_indices": null,
43
+ "use_dora": false,
44
+ "use_qalora": false,
45
+ "use_rslora": false
46
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba35af72a870789b13fdc3fd010ea7673ce4f327c01b60cbd217e033ece27b4f
3
+ size 319876480
chat_template.jinja ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {% if not add_generation_prompt is defined %}
2
+ {% set add_generation_prompt = false %}
3
+ {% endif %}
4
+ {%- set ns = namespace(found=false) -%}
5
+ {%- for message in messages -%}
6
+ {%- if message['role'] == 'system' -%}
7
+ {%- set ns.found = true -%}
8
+ {%- endif -%}
9
+ {%- endfor -%}
10
+ {{bos_token}}{%- if not ns.found -%}
11
+ {{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\n'}}
12
+ {%- endif %}
13
+ {%- for message in messages %}
14
+ {%- if message['role'] == 'system' %}
15
+ {{ message['content'] }}
16
+ {%- else %}
17
+ {%- if message['role'] == 'user' %}
18
+ {{'### Instruction:\n' + message['content'] + '\n'}}
19
+ {%- else %}
20
+ {{'### Response:\n' + message['content'] + '\n<|EOT|>\n'}}
21
+ {%- endif %}
22
+ {%- endif %}
23
+ {%- endfor %}
24
+ {% if add_generation_prompt %}
25
+ {{'### Response:'}}
26
+ {% endif %}
checkpoint-1000/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/deepseek-coder-6.7b-instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:deepseek-ai/deepseek-coder-6.7b-instruct
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.18.0
checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "deepseek-ai/deepseek-coder-6.7b-instruct",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 128,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 64,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "q_proj",
33
+ "v_proj",
34
+ "gate_proj",
35
+ "k_proj",
36
+ "up_proj",
37
+ "o_proj",
38
+ "down_proj"
39
+ ],
40
+ "target_parameters": null,
41
+ "task_type": "CAUSAL_LM",
42
+ "trainable_token_indices": null,
43
+ "use_dora": false,
44
+ "use_qalora": false,
45
+ "use_rslora": false
46
+ }
checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:533af4b331d74420543e63a29fa30ddd7d5a35c174fe8f28acb7d42a950f6a95
3
+ size 319876480
checkpoint-1000/chat_template.jinja ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {% if not add_generation_prompt is defined %}
2
+ {% set add_generation_prompt = false %}
3
+ {% endif %}
4
+ {%- set ns = namespace(found=false) -%}
5
+ {%- for message in messages -%}
6
+ {%- if message['role'] == 'system' -%}
7
+ {%- set ns.found = true -%}
8
+ {%- endif -%}
9
+ {%- endfor -%}
10
+ {{bos_token}}{%- if not ns.found -%}
11
+ {{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\n'}}
12
+ {%- endif %}
13
+ {%- for message in messages %}
14
+ {%- if message['role'] == 'system' %}
15
+ {{ message['content'] }}
16
+ {%- else %}
17
+ {%- if message['role'] == 'user' %}
18
+ {{'### Instruction:\n' + message['content'] + '\n'}}
19
+ {%- else %}
20
+ {{'### Response:\n' + message['content'] + '\n<|EOT|>\n'}}
21
+ {%- endif %}
22
+ {%- endif %}
23
+ {%- endfor %}
24
+ {% if add_generation_prompt %}
25
+ {{'### Response:'}}
26
+ {% endif %}
checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00bcdcc4ab07772aeaef00ae8abe5addd26a31b34ee98edcc299cec71b5d7924
3
+ size 640009746
checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b229db32b1ef2e460aad7509757c621d1ad0e6fbdeec6037d57d776c259b8ede
3
+ size 14244
checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee1446e1b3e3c3ce2d46aa85fc4492519d8c7f5e3843191c4f5b3fe87592c101
3
+ size 1064
checkpoint-1000/special_tokens_map.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|EOT|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|EOT|>"
17
+ }
checkpoint-1000/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/tokenizer_config.json ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "32000": {
7
+ "content": "õ",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "32001": {
15
+ "content": "÷",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "32002": {
23
+ "content": "Á",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32003": {
31
+ "content": "ý",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "32004": {
39
+ "content": "À",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "32005": {
47
+ "content": "ÿ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "32006": {
55
+ "content": "ø",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "32007": {
63
+ "content": "ú",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "32008": {
71
+ "content": "þ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "32009": {
79
+ "content": "ü",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "32010": {
87
+ "content": "ù",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "32011": {
95
+ "content": "ö",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "32012": {
103
+ "content": "û",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "32013": {
111
+ "content": "<|begin▁of▁sentence|>",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32014": {
119
+ "content": "<|end▁of▁sentence|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32015": {
127
+ "content": "<|fim▁hole|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "32016": {
135
+ "content": "<|fim▁begin|>",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "32017": {
143
+ "content": "<|fim▁end|>",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "32018": {
151
+ "content": "<pad>",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "32019": {
159
+ "content": "<|User|>",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "32020": {
167
+ "content": "<|Assistant|>",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "32021": {
175
+ "content": "<|EOT|>",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": true
181
+ }
182
+ },
183
+ "bos_token": "<|begin▁of▁sentence|>",
184
+ "clean_up_tokenization_spaces": false,
185
+ "eos_token": "<|EOT|>",
186
+ "extra_special_tokens": {},
187
+ "legacy": true,
188
+ "model_max_length": 16384,
189
+ "pad_token": "<|EOT|>",
190
+ "sp_model_kwargs": {},
191
+ "tokenizer_class": "LlamaTokenizerFast",
192
+ "unk_token": null,
193
+ "use_default_system_prompt": false
194
+ }
checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,1056 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.6236297198538368,
6
+ "eval_steps": 500,
7
+ "global_step": 1000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "entropy": 2.0573711842298508,
14
+ "epoch": 0.016240357287860333,
15
+ "grad_norm": 0.98046875,
16
+ "learning_rate": 3.2142857142857144e-05,
17
+ "loss": 2.3979,
18
+ "mean_token_accuracy": 0.5674526583403349,
19
+ "num_tokens": 319222.0,
20
+ "step": 10
21
+ },
22
+ {
23
+ "entropy": 1.6298254258930682,
24
+ "epoch": 0.032480714575720666,
25
+ "grad_norm": 0.7734375,
26
+ "learning_rate": 6.785714285714286e-05,
27
+ "loss": 1.7067,
28
+ "mean_token_accuracy": 0.6522471688687801,
29
+ "num_tokens": 635410.0,
30
+ "step": 20
31
+ },
32
+ {
33
+ "entropy": 0.8830645218491554,
34
+ "epoch": 0.048721071863580996,
35
+ "grad_norm": 0.28125,
36
+ "learning_rate": 0.00010357142857142859,
37
+ "loss": 0.8894,
38
+ "mean_token_accuracy": 0.791144409775734,
39
+ "num_tokens": 952489.0,
40
+ "step": 30
41
+ },
42
+ {
43
+ "entropy": 0.6340911261737346,
44
+ "epoch": 0.06496142915144133,
45
+ "grad_norm": 0.2236328125,
46
+ "learning_rate": 0.0001392857142857143,
47
+ "loss": 0.6371,
48
+ "mean_token_accuracy": 0.840929938852787,
49
+ "num_tokens": 1271722.0,
50
+ "step": 40
51
+ },
52
+ {
53
+ "entropy": 0.5732324108481407,
54
+ "epoch": 0.08120178643930166,
55
+ "grad_norm": 0.33203125,
56
+ "learning_rate": 0.000175,
57
+ "loss": 0.5747,
58
+ "mean_token_accuracy": 0.8537561506032944,
59
+ "num_tokens": 1590635.0,
60
+ "step": 50
61
+ },
62
+ {
63
+ "entropy": 0.5194318823516368,
64
+ "epoch": 0.09744214372716199,
65
+ "grad_norm": 0.115234375,
66
+ "learning_rate": 0.0001999986169583868,
67
+ "loss": 0.5268,
68
+ "mean_token_accuracy": 0.8640895910561085,
69
+ "num_tokens": 1908010.0,
70
+ "step": 60
71
+ },
72
+ {
73
+ "entropy": 0.49497435204684737,
74
+ "epoch": 0.11368250101502234,
75
+ "grad_norm": 0.125,
76
+ "learning_rate": 0.00019997403061615897,
77
+ "loss": 0.4986,
78
+ "mean_token_accuracy": 0.8717949956655502,
79
+ "num_tokens": 2225569.0,
80
+ "step": 70
81
+ },
82
+ {
83
+ "entropy": 0.4971678379923105,
84
+ "epoch": 0.12992285830288267,
85
+ "grad_norm": 0.11083984375,
86
+ "learning_rate": 0.0001999187187134847,
87
+ "loss": 0.4924,
88
+ "mean_token_accuracy": 0.8731547556817532,
89
+ "num_tokens": 2539488.0,
90
+ "step": 80
91
+ },
92
+ {
93
+ "entropy": 0.5084386952221394,
94
+ "epoch": 0.146163215590743,
95
+ "grad_norm": 0.1083984375,
96
+ "learning_rate": 0.00019983269824967067,
97
+ "loss": 0.5163,
98
+ "mean_token_accuracy": 0.8671703346073627,
99
+ "num_tokens": 2857760.0,
100
+ "step": 90
101
+ },
102
+ {
103
+ "entropy": 0.476475191116333,
104
+ "epoch": 0.16240357287860333,
105
+ "grad_norm": 0.11279296875,
106
+ "learning_rate": 0.00019971599566185206,
107
+ "loss": 0.4758,
108
+ "mean_token_accuracy": 0.876344844698906,
109
+ "num_tokens": 3174136.0,
110
+ "step": 100
111
+ },
112
+ {
113
+ "entropy": 0.48804047554731367,
114
+ "epoch": 0.17864393016646365,
115
+ "grad_norm": 0.1025390625,
116
+ "learning_rate": 0.00019956864681686744,
117
+ "loss": 0.4837,
118
+ "mean_token_accuracy": 0.8742976881563663,
119
+ "num_tokens": 3489505.0,
120
+ "step": 110
121
+ },
122
+ {
123
+ "entropy": 0.4607066061347723,
124
+ "epoch": 0.19488428745432398,
125
+ "grad_norm": 0.255859375,
126
+ "learning_rate": 0.00019939069700023563,
127
+ "loss": 0.4639,
128
+ "mean_token_accuracy": 0.879499676078558,
129
+ "num_tokens": 3807935.0,
130
+ "step": 120
131
+ },
132
+ {
133
+ "entropy": 0.4422083988785744,
134
+ "epoch": 0.21112464474218431,
135
+ "grad_norm": 0.099609375,
136
+ "learning_rate": 0.00019918220090223775,
137
+ "loss": 0.4431,
138
+ "mean_token_accuracy": 0.8831395357847214,
139
+ "num_tokens": 4125137.0,
140
+ "step": 130
141
+ },
142
+ {
143
+ "entropy": 0.44356597438454626,
144
+ "epoch": 0.22736500203004467,
145
+ "grad_norm": 0.10595703125,
146
+ "learning_rate": 0.00019894322260110927,
147
+ "loss": 0.4373,
148
+ "mean_token_accuracy": 0.8849747203290462,
149
+ "num_tokens": 4442538.0,
150
+ "step": 140
151
+ },
152
+ {
153
+ "entropy": 0.44916940554976464,
154
+ "epoch": 0.243605359317905,
155
+ "grad_norm": 0.11083984375,
156
+ "learning_rate": 0.00019867383554334603,
157
+ "loss": 0.4473,
158
+ "mean_token_accuracy": 0.8828106552362442,
159
+ "num_tokens": 4761703.0,
160
+ "step": 150
161
+ },
162
+ {
163
+ "entropy": 0.44491727463901043,
164
+ "epoch": 0.25984571660576533,
165
+ "grad_norm": 0.09716796875,
166
+ "learning_rate": 0.00019837412252113204,
167
+ "loss": 0.446,
168
+ "mean_token_accuracy": 0.8818246781826019,
169
+ "num_tokens": 5080459.0,
170
+ "step": 160
171
+ },
172
+ {
173
+ "entropy": 0.4443864993751049,
174
+ "epoch": 0.27608607389362566,
175
+ "grad_norm": 0.11474609375,
176
+ "learning_rate": 0.00019804417564689403,
177
+ "loss": 0.4424,
178
+ "mean_token_accuracy": 0.8833745121955872,
179
+ "num_tokens": 5394935.0,
180
+ "step": 170
181
+ },
182
+ {
183
+ "entropy": 0.43182576820254326,
184
+ "epoch": 0.292326431181486,
185
+ "grad_norm": 0.10302734375,
186
+ "learning_rate": 0.00019768409632499244,
187
+ "loss": 0.4337,
188
+ "mean_token_accuracy": 0.8853104099631309,
189
+ "num_tokens": 5711130.0,
190
+ "step": 180
191
+ },
192
+ {
193
+ "entropy": 0.4353721059858799,
194
+ "epoch": 0.3085667884693463,
195
+ "grad_norm": 0.10205078125,
196
+ "learning_rate": 0.00019729399522055603,
197
+ "loss": 0.4351,
198
+ "mean_token_accuracy": 0.8850096859037876,
199
+ "num_tokens": 6028009.0,
200
+ "step": 190
201
+ },
202
+ {
203
+ "entropy": 0.4161925382912159,
204
+ "epoch": 0.32480714575720665,
205
+ "grad_norm": 0.10107421875,
206
+ "learning_rate": 0.0001968739922254706,
207
+ "loss": 0.4118,
208
+ "mean_token_accuracy": 0.8901829145848751,
209
+ "num_tokens": 6345284.0,
210
+ "step": 200
211
+ },
212
+ {
213
+ "entropy": 0.4270293299108744,
214
+ "epoch": 0.341047503045067,
215
+ "grad_norm": 0.126953125,
216
+ "learning_rate": 0.00019642421642153198,
217
+ "loss": 0.4266,
218
+ "mean_token_accuracy": 0.885687505453825,
219
+ "num_tokens": 6664555.0,
220
+ "step": 210
221
+ },
222
+ {
223
+ "entropy": 0.4177013225853443,
224
+ "epoch": 0.3572878603329273,
225
+ "grad_norm": 0.09912109375,
226
+ "learning_rate": 0.0001959448060407748,
227
+ "loss": 0.4185,
228
+ "mean_token_accuracy": 0.8890490755438805,
229
+ "num_tokens": 6984869.0,
230
+ "step": 220
231
+ },
232
+ {
233
+ "entropy": 0.4492575516924262,
234
+ "epoch": 0.37352821762078764,
235
+ "grad_norm": 0.125,
236
+ "learning_rate": 0.00019543590842298857,
237
+ "loss": 0.4471,
238
+ "mean_token_accuracy": 0.8821755766868591,
239
+ "num_tokens": 7301522.0,
240
+ "step": 230
241
+ },
242
+ {
243
+ "entropy": 0.4262876145541668,
244
+ "epoch": 0.38976857490864797,
245
+ "grad_norm": 0.126953125,
246
+ "learning_rate": 0.0001948976799704351,
247
+ "loss": 0.4272,
248
+ "mean_token_accuracy": 0.8858069330453873,
249
+ "num_tokens": 7617411.0,
250
+ "step": 240
251
+ },
252
+ {
253
+ "entropy": 0.4227599944919348,
254
+ "epoch": 0.4060089321965083,
255
+ "grad_norm": 0.111328125,
256
+ "learning_rate": 0.0001943302860997807,
257
+ "loss": 0.4183,
258
+ "mean_token_accuracy": 0.889183484762907,
259
+ "num_tokens": 7932287.0,
260
+ "step": 250
261
+ },
262
+ {
263
+ "entropy": 0.4225012965500355,
264
+ "epoch": 0.42224928948436863,
265
+ "grad_norm": 0.173828125,
266
+ "learning_rate": 0.00019373390119125752,
267
+ "loss": 0.4241,
268
+ "mean_token_accuracy": 0.8874775715172291,
269
+ "num_tokens": 8249106.0,
270
+ "step": 260
271
+ },
272
+ {
273
+ "entropy": 0.4166328992694616,
274
+ "epoch": 0.438489646772229,
275
+ "grad_norm": 0.109375,
276
+ "learning_rate": 0.00019310870853507043,
277
+ "loss": 0.4183,
278
+ "mean_token_accuracy": 0.8885860778391361,
279
+ "num_tokens": 8564544.0,
280
+ "step": 270
281
+ },
282
+ {
283
+ "entropy": 0.38806356210261583,
284
+ "epoch": 0.45473000406008934,
285
+ "grad_norm": 0.11328125,
286
+ "learning_rate": 0.00019245490027506546,
287
+ "loss": 0.3836,
288
+ "mean_token_accuracy": 0.8962622597813606,
289
+ "num_tokens": 8883546.0,
290
+ "step": 280
291
+ },
292
+ {
293
+ "entropy": 0.388262290135026,
294
+ "epoch": 0.4709703613479497,
295
+ "grad_norm": 0.09130859375,
296
+ "learning_rate": 0.0001917726773496773,
297
+ "loss": 0.3847,
298
+ "mean_token_accuracy": 0.8955962382256984,
299
+ "num_tokens": 9199902.0,
300
+ "step": 290
301
+ },
302
+ {
303
+ "entropy": 0.40017246957868335,
304
+ "epoch": 0.48721071863581,
305
+ "grad_norm": 0.09716796875,
306
+ "learning_rate": 0.00019106224943017352,
307
+ "loss": 0.3984,
308
+ "mean_token_accuracy": 0.8926815405488014,
309
+ "num_tokens": 9518427.0,
310
+ "step": 300
311
+ },
312
+ {
313
+ "entropy": 0.39343364126980307,
314
+ "epoch": 0.5034510759236703,
315
+ "grad_norm": 0.09521484375,
316
+ "learning_rate": 0.00019032383485621546,
317
+ "loss": 0.3936,
318
+ "mean_token_accuracy": 0.8935227513313293,
319
+ "num_tokens": 9834801.0,
320
+ "step": 310
321
+ },
322
+ {
323
+ "entropy": 0.40088152755051853,
324
+ "epoch": 0.5196914332115307,
325
+ "grad_norm": 0.09423828125,
326
+ "learning_rate": 0.00018955766056875456,
327
+ "loss": 0.4013,
328
+ "mean_token_accuracy": 0.8928539358079434,
329
+ "num_tokens": 10150756.0,
330
+ "step": 320
331
+ },
332
+ {
333
+ "entropy": 0.3935076169669628,
334
+ "epoch": 0.535931790499391,
335
+ "grad_norm": 0.09619140625,
336
+ "learning_rate": 0.0001887639620402854,
337
+ "loss": 0.3894,
338
+ "mean_token_accuracy": 0.8937225684523582,
339
+ "num_tokens": 10470119.0,
340
+ "step": 330
341
+ },
342
+ {
343
+ "entropy": 0.4141834359616041,
344
+ "epoch": 0.5521721477872513,
345
+ "grad_norm": 0.099609375,
346
+ "learning_rate": 0.00018794298320247665,
347
+ "loss": 0.415,
348
+ "mean_token_accuracy": 0.8895114719867706,
349
+ "num_tokens": 10787249.0,
350
+ "step": 340
351
+ },
352
+ {
353
+ "entropy": 0.41944080144166945,
354
+ "epoch": 0.5684125050751117,
355
+ "grad_norm": 0.1162109375,
356
+ "learning_rate": 0.0001870949763712022,
357
+ "loss": 0.4151,
358
+ "mean_token_accuracy": 0.8887378059327602,
359
+ "num_tokens": 11107800.0,
360
+ "step": 350
361
+ },
362
+ {
363
+ "entropy": 0.4085154063999653,
364
+ "epoch": 0.584652862362972,
365
+ "grad_norm": 0.123046875,
366
+ "learning_rate": 0.00018622020216899575,
367
+ "loss": 0.4067,
368
+ "mean_token_accuracy": 0.8906957127153874,
369
+ "num_tokens": 11424520.0,
370
+ "step": 360
371
+ },
372
+ {
373
+ "entropy": 0.41457892414182423,
374
+ "epoch": 0.6008932196508323,
375
+ "grad_norm": 0.1005859375,
376
+ "learning_rate": 0.00018531892944495195,
377
+ "loss": 0.4139,
378
+ "mean_token_accuracy": 0.8893011771142483,
379
+ "num_tokens": 11743854.0,
380
+ "step": 370
381
+ },
382
+ {
383
+ "entropy": 0.3982046090066433,
384
+ "epoch": 0.6171335769386926,
385
+ "grad_norm": 0.095703125,
386
+ "learning_rate": 0.00018439143519209984,
387
+ "loss": 0.3972,
388
+ "mean_token_accuracy": 0.8931242369115353,
389
+ "num_tokens": 12060493.0,
390
+ "step": 380
391
+ },
392
+ {
393
+ "entropy": 0.37617460917681456,
394
+ "epoch": 0.633373934226553,
395
+ "grad_norm": 0.17578125,
396
+ "learning_rate": 0.00018343800446227285,
397
+ "loss": 0.3737,
398
+ "mean_token_accuracy": 0.8988998346030712,
399
+ "num_tokens": 12377614.0,
400
+ "step": 390
401
+ },
402
+ {
403
+ "entropy": 0.38792264480143784,
404
+ "epoch": 0.6496142915144133,
405
+ "grad_norm": 0.1025390625,
406
+ "learning_rate": 0.00018245893027850254,
407
+ "loss": 0.3863,
408
+ "mean_token_accuracy": 0.8964896731078624,
409
+ "num_tokens": 12695713.0,
410
+ "step": 400
411
+ },
412
+ {
413
+ "entropy": 0.3779356569051743,
414
+ "epoch": 0.6658546488022736,
415
+ "grad_norm": 0.09912109375,
416
+ "learning_rate": 0.00018145451354496198,
417
+ "loss": 0.377,
418
+ "mean_token_accuracy": 0.8985928252339364,
419
+ "num_tokens": 13011198.0,
420
+ "step": 410
421
+ },
422
+ {
423
+ "entropy": 0.40948784444481134,
424
+ "epoch": 0.682095006090134,
425
+ "grad_norm": 0.1162109375,
426
+ "learning_rate": 0.0001804250629544874,
427
+ "loss": 0.4077,
428
+ "mean_token_accuracy": 0.8911456301808357,
429
+ "num_tokens": 13329544.0,
430
+ "step": 420
431
+ },
432
+ {
433
+ "entropy": 0.38341086860746143,
434
+ "epoch": 0.6983353633779943,
435
+ "grad_norm": 0.10888671875,
436
+ "learning_rate": 0.00017937089489370594,
437
+ "loss": 0.3829,
438
+ "mean_token_accuracy": 0.8969453655183315,
439
+ "num_tokens": 13645469.0,
440
+ "step": 430
441
+ },
442
+ {
443
+ "entropy": 0.3890859391540289,
444
+ "epoch": 0.7145757206658546,
445
+ "grad_norm": 0.10400390625,
446
+ "learning_rate": 0.0001782923333457987,
447
+ "loss": 0.3875,
448
+ "mean_token_accuracy": 0.8961056731641293,
449
+ "num_tokens": 13964383.0,
450
+ "step": 440
451
+ },
452
+ {
453
+ "entropy": 0.3823310313746333,
454
+ "epoch": 0.730816077953715,
455
+ "grad_norm": 0.09375,
456
+ "learning_rate": 0.0001771897097909294,
457
+ "loss": 0.3857,
458
+ "mean_token_accuracy": 0.8955351069569588,
459
+ "num_tokens": 14284139.0,
460
+ "step": 450
461
+ },
462
+ {
463
+ "entropy": 0.372044226154685,
464
+ "epoch": 0.7470564352415753,
465
+ "grad_norm": 0.1044921875,
466
+ "learning_rate": 0.00017606336310436874,
467
+ "loss": 0.3703,
468
+ "mean_token_accuracy": 0.8989921748638153,
469
+ "num_tokens": 14601084.0,
470
+ "step": 460
471
+ },
472
+ {
473
+ "entropy": 0.3764212913811207,
474
+ "epoch": 0.7632967925294356,
475
+ "grad_norm": 0.10546875,
476
+ "learning_rate": 0.00017491363945234593,
477
+ "loss": 0.3708,
478
+ "mean_token_accuracy": 0.8989950515329838,
479
+ "num_tokens": 14919347.0,
480
+ "step": 470
481
+ },
482
+ {
483
+ "entropy": 0.3796376219019294,
484
+ "epoch": 0.7795371498172959,
485
+ "grad_norm": 0.0986328125,
486
+ "learning_rate": 0.00017374089218565972,
487
+ "loss": 0.3777,
488
+ "mean_token_accuracy": 0.8979221723973752,
489
+ "num_tokens": 15235024.0,
490
+ "step": 480
491
+ },
492
+ {
493
+ "entropy": 0.3780976843088865,
494
+ "epoch": 0.7957775071051563,
495
+ "grad_norm": 0.09326171875,
496
+ "learning_rate": 0.000172545481731081,
497
+ "loss": 0.3814,
498
+ "mean_token_accuracy": 0.8970133177936077,
499
+ "num_tokens": 15555890.0,
500
+ "step": 490
501
+ },
502
+ {
503
+ "entropy": 0.36868189480155705,
504
+ "epoch": 0.8120178643930166,
505
+ "grad_norm": 0.1318359375,
506
+ "learning_rate": 0.00017132777548058102,
507
+ "loss": 0.367,
508
+ "mean_token_accuracy": 0.8997100129723549,
509
+ "num_tokens": 15871127.0,
510
+ "step": 500
511
+ },
512
+ {
513
+ "epoch": 0.8120178643930166,
514
+ "eval_entropy": 0.3875140378834637,
515
+ "eval_loss": 0.38122546672821045,
516
+ "eval_mean_token_accuracy": 0.8967177114868892,
517
+ "eval_num_tokens": 15871127.0,
518
+ "eval_runtime": 177.0916,
519
+ "eval_samples_per_second": 2.953,
520
+ "eval_steps_per_second": 1.479,
521
+ "step": 500
522
+ },
523
+ {
524
+ "entropy": 0.36098182667046785,
525
+ "epoch": 0.8282582216808769,
526
+ "grad_norm": 0.091796875,
527
+ "learning_rate": 0.00017008814767841872,
528
+ "loss": 0.358,
529
+ "mean_token_accuracy": 0.9020477868616581,
530
+ "num_tokens": 16186646.0,
531
+ "step": 510
532
+ },
533
+ {
534
+ "entropy": 0.37107769679278135,
535
+ "epoch": 0.8444985789687373,
536
+ "grad_norm": 0.0966796875,
537
+ "learning_rate": 0.00016882697930612237,
538
+ "loss": 0.3667,
539
+ "mean_token_accuracy": 0.8997148185968399,
540
+ "num_tokens": 16505442.0,
541
+ "step": 520
542
+ },
543
+ {
544
+ "entropy": 0.36859209295362233,
545
+ "epoch": 0.8607389362565977,
546
+ "grad_norm": 0.09228515625,
547
+ "learning_rate": 0.00016754465796540028,
548
+ "loss": 0.3656,
549
+ "mean_token_accuracy": 0.9001396887004376,
550
+ "num_tokens": 16824612.0,
551
+ "step": 530
552
+ },
553
+ {
554
+ "entropy": 0.36337947361171247,
555
+ "epoch": 0.876979293544458,
556
+ "grad_norm": 0.095703125,
557
+ "learning_rate": 0.0001662415777590172,
558
+ "loss": 0.3653,
559
+ "mean_token_accuracy": 0.9004977688193321,
560
+ "num_tokens": 17147012.0,
561
+ "step": 540
562
+ },
563
+ {
564
+ "entropy": 0.38551054075360297,
565
+ "epoch": 0.8932196508323184,
566
+ "grad_norm": 0.10302734375,
567
+ "learning_rate": 0.00016491813916967246,
568
+ "loss": 0.3841,
569
+ "mean_token_accuracy": 0.8968335554003716,
570
+ "num_tokens": 17463603.0,
571
+ "step": 550
572
+ },
573
+ {
574
+ "entropy": 0.3718857761472464,
575
+ "epoch": 0.9094600081201787,
576
+ "grad_norm": 0.1025390625,
577
+ "learning_rate": 0.00016357474893691757,
578
+ "loss": 0.3694,
579
+ "mean_token_accuracy": 0.8994779132306576,
580
+ "num_tokens": 17780634.0,
581
+ "step": 560
582
+ },
583
+ {
584
+ "entropy": 0.3478269662708044,
585
+ "epoch": 0.925700365408039,
586
+ "grad_norm": 0.1005859375,
587
+ "learning_rate": 0.00016221181993215068,
588
+ "loss": 0.3495,
589
+ "mean_token_accuracy": 0.9044472806155681,
590
+ "num_tokens": 18099787.0,
591
+ "step": 570
592
+ },
593
+ {
594
+ "entropy": 0.3706334102898836,
595
+ "epoch": 0.9419407226958993,
596
+ "grad_norm": 0.10107421875,
597
+ "learning_rate": 0.00016082977103172664,
598
+ "loss": 0.3643,
599
+ "mean_token_accuracy": 0.9007264509797096,
600
+ "num_tokens": 18417572.0,
601
+ "step": 580
602
+ },
603
+ {
604
+ "entropy": 0.33980775382369754,
605
+ "epoch": 0.9581810799837597,
606
+ "grad_norm": 0.099609375,
607
+ "learning_rate": 0.00015942902698822136,
608
+ "loss": 0.339,
609
+ "mean_token_accuracy": 0.9067365050315856,
610
+ "num_tokens": 18734911.0,
611
+ "step": 590
612
+ },
613
+ {
614
+ "entropy": 0.36088257618248465,
615
+ "epoch": 0.97442143727162,
616
+ "grad_norm": 0.10693359375,
617
+ "learning_rate": 0.00015801001829989032,
618
+ "loss": 0.3576,
619
+ "mean_token_accuracy": 0.9025222927331924,
620
+ "num_tokens": 19054345.0,
621
+ "step": 600
622
+ },
623
+ {
624
+ "entropy": 0.35844882633537056,
625
+ "epoch": 0.9906617945594803,
626
+ "grad_norm": 0.10400390625,
627
+ "learning_rate": 0.0001565731810783613,
628
+ "loss": 0.3553,
629
+ "mean_token_accuracy": 0.9028041236102581,
630
+ "num_tokens": 19371809.0,
631
+ "step": 610
632
+ },
633
+ {
634
+ "entropy": 0.3564173472233308,
635
+ "epoch": 1.0064961429151442,
636
+ "grad_norm": 0.11181640625,
637
+ "learning_rate": 0.00015511895691460188,
638
+ "loss": 0.353,
639
+ "mean_token_accuracy": 0.9035867773569547,
640
+ "num_tokens": 19684212.0,
641
+ "step": 620
642
+ },
643
+ {
644
+ "entropy": 0.3372783612459898,
645
+ "epoch": 1.0227365002030044,
646
+ "grad_norm": 0.1064453125,
647
+ "learning_rate": 0.00015364779274320255,
648
+ "loss": 0.3362,
649
+ "mean_token_accuracy": 0.9072924487292766,
650
+ "num_tokens": 20003357.0,
651
+ "step": 630
652
+ },
653
+ {
654
+ "entropy": 0.3311926079913974,
655
+ "epoch": 1.0389768574908649,
656
+ "grad_norm": 0.09912109375,
657
+ "learning_rate": 0.00015216014070501834,
658
+ "loss": 0.3244,
659
+ "mean_token_accuracy": 0.9089326687157154,
660
+ "num_tokens": 20322614.0,
661
+ "step": 640
662
+ },
663
+ {
664
+ "entropy": 0.33821379821747544,
665
+ "epoch": 1.055217214778725,
666
+ "grad_norm": 0.09912109375,
667
+ "learning_rate": 0.0001506564580082096,
668
+ "loss": 0.3388,
669
+ "mean_token_accuracy": 0.9062777034938335,
670
+ "num_tokens": 20635631.0,
671
+ "step": 650
672
+ },
673
+ {
674
+ "entropy": 0.3465416576713324,
675
+ "epoch": 1.0714575720665855,
676
+ "grad_norm": 0.1083984375,
677
+ "learning_rate": 0.00014913720678772584,
678
+ "loss": 0.3455,
679
+ "mean_token_accuracy": 0.9043642178177833,
680
+ "num_tokens": 20955241.0,
681
+ "step": 660
682
+ },
683
+ {
684
+ "entropy": 0.33202757611870765,
685
+ "epoch": 1.0876979293544458,
686
+ "grad_norm": 0.10595703125,
687
+ "learning_rate": 0.00014760285396327532,
688
+ "loss": 0.3277,
689
+ "mean_token_accuracy": 0.9081737406551837,
690
+ "num_tokens": 21269871.0,
691
+ "step": 670
692
+ },
693
+ {
694
+ "entropy": 0.30594254843890667,
695
+ "epoch": 1.1039382866423062,
696
+ "grad_norm": 0.140625,
697
+ "learning_rate": 0.000146053871095824,
698
+ "loss": 0.3029,
699
+ "mean_token_accuracy": 0.9145903818309307,
700
+ "num_tokens": 21586356.0,
701
+ "step": 680
702
+ },
703
+ {
704
+ "entropy": 0.31971859056502583,
705
+ "epoch": 1.1201786439301664,
706
+ "grad_norm": 0.107421875,
707
+ "learning_rate": 0.00014449073424266837,
708
+ "loss": 0.3133,
709
+ "mean_token_accuracy": 0.9111780665814877,
710
+ "num_tokens": 21905514.0,
711
+ "step": 690
712
+ },
713
+ {
714
+ "entropy": 0.32340758945792913,
715
+ "epoch": 1.1364190012180269,
716
+ "grad_norm": 0.1005859375,
717
+ "learning_rate": 0.0001429139238111259,
718
+ "loss": 0.3199,
719
+ "mean_token_accuracy": 0.910588438808918,
720
+ "num_tokens": 22224116.0,
721
+ "step": 700
722
+ },
723
+ {
724
+ "entropy": 0.30627013817429544,
725
+ "epoch": 1.152659358505887,
726
+ "grad_norm": 0.11474609375,
727
+ "learning_rate": 0.00014132392441088898,
728
+ "loss": 0.3062,
729
+ "mean_token_accuracy": 0.9141925357282161,
730
+ "num_tokens": 22541518.0,
731
+ "step": 710
732
+ },
733
+ {
734
+ "entropy": 0.34387709144502876,
735
+ "epoch": 1.1688997157937475,
736
+ "grad_norm": 0.10986328125,
737
+ "learning_rate": 0.00013972122470508726,
738
+ "loss": 0.3388,
739
+ "mean_token_accuracy": 0.9059014208614826,
740
+ "num_tokens": 22857809.0,
741
+ "step": 720
742
+ },
743
+ {
744
+ "entropy": 0.3105178466066718,
745
+ "epoch": 1.1851400730816077,
746
+ "grad_norm": 0.103515625,
747
+ "learning_rate": 0.00013810631726010405,
748
+ "loss": 0.3113,
749
+ "mean_token_accuracy": 0.912415674328804,
750
+ "num_tokens": 23175061.0,
751
+ "step": 730
752
+ },
753
+ {
754
+ "entropy": 0.32021520137786863,
755
+ "epoch": 1.2013804303694682,
756
+ "grad_norm": 0.10205078125,
757
+ "learning_rate": 0.00013647969839419334,
758
+ "loss": 0.3166,
759
+ "mean_token_accuracy": 0.9124397613108158,
760
+ "num_tokens": 23492422.0,
761
+ "step": 740
762
+ },
763
+ {
764
+ "entropy": 0.33215807750821114,
765
+ "epoch": 1.2176207876573284,
766
+ "grad_norm": 0.10693359375,
767
+ "learning_rate": 0.00013484186802494345,
768
+ "loss": 0.3288,
769
+ "mean_token_accuracy": 0.9079324699938297,
770
+ "num_tokens": 23811312.0,
771
+ "step": 750
772
+ },
773
+ {
774
+ "entropy": 0.3269189100712538,
775
+ "epoch": 1.2338611449451888,
776
+ "grad_norm": 0.12353515625,
777
+ "learning_rate": 0.00013319332951563495,
778
+ "loss": 0.3229,
779
+ "mean_token_accuracy": 0.9100485563278198,
780
+ "num_tokens": 24127363.0,
781
+ "step": 760
782
+ },
783
+ {
784
+ "entropy": 0.32415517419576645,
785
+ "epoch": 1.250101502233049,
786
+ "grad_norm": 0.10498046875,
787
+ "learning_rate": 0.0001315345895205389,
788
+ "loss": 0.3218,
789
+ "mean_token_accuracy": 0.9100560195744037,
790
+ "num_tokens": 24443515.0,
791
+ "step": 770
792
+ },
793
+ {
794
+ "entropy": 0.3075957763940096,
795
+ "epoch": 1.2663418595209095,
796
+ "grad_norm": 0.107421875,
797
+ "learning_rate": 0.0001298661578292044,
798
+ "loss": 0.3085,
799
+ "mean_token_accuracy": 0.9134799301624298,
800
+ "num_tokens": 24759656.0,
801
+ "step": 780
802
+ },
803
+ {
804
+ "entropy": 0.33256804049015043,
805
+ "epoch": 1.2825822168087697,
806
+ "grad_norm": 0.11572265625,
807
+ "learning_rate": 0.00012818854720978196,
808
+ "loss": 0.3283,
809
+ "mean_token_accuracy": 0.9092446401715278,
810
+ "num_tokens": 25076124.0,
811
+ "step": 790
812
+ },
813
+ {
814
+ "entropy": 0.3044602788053453,
815
+ "epoch": 1.2988225740966302,
816
+ "grad_norm": 0.109375,
817
+ "learning_rate": 0.00012650227325143191,
818
+ "loss": 0.2998,
819
+ "mean_token_accuracy": 0.9158783234655857,
820
+ "num_tokens": 25394550.0,
821
+ "step": 800
822
+ },
823
+ {
824
+ "entropy": 0.3089112024754286,
825
+ "epoch": 1.3150629313844906,
826
+ "grad_norm": 0.1181640625,
827
+ "learning_rate": 0.0001248078542058653,
828
+ "loss": 0.3065,
829
+ "mean_token_accuracy": 0.9139430224895477,
830
+ "num_tokens": 25713937.0,
831
+ "step": 810
832
+ },
833
+ {
834
+ "entropy": 0.3199151481501758,
835
+ "epoch": 1.3313032886723508,
836
+ "grad_norm": 0.1064453125,
837
+ "learning_rate": 0.00012310581082806713,
838
+ "loss": 0.3153,
839
+ "mean_token_accuracy": 0.9130744747817516,
840
+ "num_tokens": 26033627.0,
841
+ "step": 820
842
+ },
843
+ {
844
+ "entropy": 0.3134147599339485,
845
+ "epoch": 1.347543645960211,
846
+ "grad_norm": 0.10888671875,
847
+ "learning_rate": 0.0001213966662162496,
848
+ "loss": 0.3158,
849
+ "mean_token_accuracy": 0.9115599945187569,
850
+ "num_tokens": 26351334.0,
851
+ "step": 830
852
+ },
853
+ {
854
+ "entropy": 0.30595332104712725,
855
+ "epoch": 1.3637840032480715,
856
+ "grad_norm": 0.11376953125,
857
+ "learning_rate": 0.00011968094565108572,
858
+ "loss": 0.2998,
859
+ "mean_token_accuracy": 0.9158065438270568,
860
+ "num_tokens": 26670167.0,
861
+ "step": 840
862
+ },
863
+ {
864
+ "entropy": 0.3209634754806757,
865
+ "epoch": 1.380024360535932,
866
+ "grad_norm": 0.10693359375,
867
+ "learning_rate": 0.00011795917643427179,
868
+ "loss": 0.3185,
869
+ "mean_token_accuracy": 0.9116993598639965,
870
+ "num_tokens": 26987963.0,
871
+ "step": 850
872
+ },
873
+ {
874
+ "entropy": 0.31424548048526046,
875
+ "epoch": 1.3962647178237921,
876
+ "grad_norm": 0.1171875,
877
+ "learning_rate": 0.0001162318877264691,
878
+ "loss": 0.3089,
879
+ "mean_token_accuracy": 0.9129889853298664,
880
+ "num_tokens": 27308192.0,
881
+ "step": 860
882
+ },
883
+ {
884
+ "entropy": 0.33518767151981593,
885
+ "epoch": 1.4125050751116524,
886
+ "grad_norm": 0.11572265625,
887
+ "learning_rate": 0.00011449961038467389,
888
+ "loss": 0.3334,
889
+ "mean_token_accuracy": 0.907250489294529,
890
+ "num_tokens": 27627277.0,
891
+ "step": 870
892
+ },
893
+ {
894
+ "entropy": 0.32196133993566034,
895
+ "epoch": 1.4287454323995128,
896
+ "grad_norm": 0.11083984375,
897
+ "learning_rate": 0.00011276287679906639,
898
+ "loss": 0.3235,
899
+ "mean_token_accuracy": 0.9093112558126449,
900
+ "num_tokens": 27943368.0,
901
+ "step": 880
902
+ },
903
+ {
904
+ "entropy": 0.3061803586781025,
905
+ "epoch": 1.4449857896873732,
906
+ "grad_norm": 0.115234375,
907
+ "learning_rate": 0.00011102222072938832,
908
+ "loss": 0.3011,
909
+ "mean_token_accuracy": 0.915228334069252,
910
+ "num_tokens": 28259836.0,
911
+ "step": 890
912
+ },
913
+ {
914
+ "entropy": 0.3232524123042822,
915
+ "epoch": 1.4612261469752335,
916
+ "grad_norm": 0.111328125,
917
+ "learning_rate": 0.00010927817714089973,
918
+ "loss": 0.3191,
919
+ "mean_token_accuracy": 0.9117089517414569,
920
+ "num_tokens": 28580230.0,
921
+ "step": 900
922
+ },
923
+ {
924
+ "entropy": 0.33082296065986155,
925
+ "epoch": 1.4774665042630937,
926
+ "grad_norm": 0.11962890625,
927
+ "learning_rate": 0.00010753128203996519,
928
+ "loss": 0.3269,
929
+ "mean_token_accuracy": 0.9086541675031186,
930
+ "num_tokens": 28898617.0,
931
+ "step": 910
932
+ },
933
+ {
934
+ "entropy": 0.3250410893931985,
935
+ "epoch": 1.4937068615509541,
936
+ "grad_norm": 0.150390625,
937
+ "learning_rate": 0.00010578207230932,
938
+ "loss": 0.319,
939
+ "mean_token_accuracy": 0.9112100295722485,
940
+ "num_tokens": 29215055.0,
941
+ "step": 920
942
+ },
943
+ {
944
+ "entropy": 0.3142668510787189,
945
+ "epoch": 1.5099472188388146,
946
+ "grad_norm": 0.1123046875,
947
+ "learning_rate": 0.00010403108554306717,
948
+ "loss": 0.3122,
949
+ "mean_token_accuracy": 0.9117408633232117,
950
+ "num_tokens": 29529393.0,
951
+ "step": 930
952
+ },
953
+ {
954
+ "entropy": 0.3135885909199715,
955
+ "epoch": 1.5261875761266748,
956
+ "grad_norm": 0.11572265625,
957
+ "learning_rate": 0.00010227885988145563,
958
+ "loss": 0.3075,
959
+ "mean_token_accuracy": 0.9139442838728428,
960
+ "num_tokens": 29851116.0,
961
+ "step": 940
962
+ },
963
+ {
964
+ "entropy": 0.3046269157901406,
965
+ "epoch": 1.542427933414535,
966
+ "grad_norm": 0.10693359375,
967
+ "learning_rate": 0.00010052593384549082,
968
+ "loss": 0.3034,
969
+ "mean_token_accuracy": 0.9146199978888034,
970
+ "num_tokens": 30169222.0,
971
+ "step": 950
972
+ },
973
+ {
974
+ "entropy": 0.31176882088184354,
975
+ "epoch": 1.5586682907023954,
976
+ "grad_norm": 0.11767578125,
977
+ "learning_rate": 9.877284617142802e-05,
978
+ "loss": 0.3083,
979
+ "mean_token_accuracy": 0.9138757094740868,
980
+ "num_tokens": 30484117.0,
981
+ "step": 960
982
+ },
983
+ {
984
+ "entropy": 0.31525961998850105,
985
+ "epoch": 1.5749086479902559,
986
+ "grad_norm": 0.11328125,
987
+ "learning_rate": 9.702013564519954e-05,
988
+ "loss": 0.311,
989
+ "mean_token_accuracy": 0.9124061703681946,
990
+ "num_tokens": 30804341.0,
991
+ "step": 970
992
+ },
993
+ {
994
+ "entropy": 0.3192242424935102,
995
+ "epoch": 1.591149005278116,
996
+ "grad_norm": 0.1123046875,
997
+ "learning_rate": 9.526834093682685e-05,
998
+ "loss": 0.3172,
999
+ "mean_token_accuracy": 0.9116800054907799,
1000
+ "num_tokens": 31119505.0,
1001
+ "step": 980
1002
+ },
1003
+ {
1004
+ "entropy": 0.30036033764481546,
1005
+ "epoch": 1.6073893625659763,
1006
+ "grad_norm": 0.11376953125,
1007
+ "learning_rate": 9.351800043486823e-05,
1008
+ "loss": 0.298,
1009
+ "mean_token_accuracy": 0.9167301289737224,
1010
+ "num_tokens": 31433788.0,
1011
+ "step": 990
1012
+ },
1013
+ {
1014
+ "entropy": 0.3045342108234763,
1015
+ "epoch": 1.6236297198538368,
1016
+ "grad_norm": 0.11572265625,
1017
+ "learning_rate": 9.176965208095265e-05,
1018
+ "loss": 0.3011,
1019
+ "mean_token_accuracy": 0.915463775396347,
1020
+ "num_tokens": 31754135.0,
1021
+ "step": 1000
1022
+ },
1023
+ {
1024
+ "epoch": 1.6236297198538368,
1025
+ "eval_entropy": 0.3258335756436559,
1026
+ "eval_loss": 0.3386901617050171,
1027
+ "eval_mean_token_accuracy": 0.9073542472515398,
1028
+ "eval_num_tokens": 31754135.0,
1029
+ "eval_runtime": 177.024,
1030
+ "eval_samples_per_second": 2.954,
1031
+ "eval_steps_per_second": 1.48,
1032
+ "step": 1000
1033
+ }
1034
+ ],
1035
+ "logging_steps": 10,
1036
+ "max_steps": 1848,
1037
+ "num_input_tokens_seen": 0,
1038
+ "num_train_epochs": 3,
1039
+ "save_steps": 500,
1040
+ "stateful_callbacks": {
1041
+ "TrainerControl": {
1042
+ "args": {
1043
+ "should_epoch_stop": false,
1044
+ "should_evaluate": false,
1045
+ "should_log": false,
1046
+ "should_save": true,
1047
+ "should_training_stop": false
1048
+ },
1049
+ "attributes": {}
1050
+ }
1051
+ },
1052
+ "total_flos": 1.289529077619794e+18,
1053
+ "train_batch_size": 2,
1054
+ "trial_name": null,
1055
+ "trial_params": null
1056
+ }
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdf35871814e6362e8e3bb1e06bd89d86d567b552dd8281db302a8194398bec8
3
+ size 6008
checkpoint-1500/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/deepseek-coder-6.7b-instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:deepseek-ai/deepseek-coder-6.7b-instruct
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.18.0
checkpoint-1500/adapter_config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "deepseek-ai/deepseek-coder-6.7b-instruct",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 128,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 64,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "q_proj",
33
+ "v_proj",
34
+ "gate_proj",
35
+ "k_proj",
36
+ "up_proj",
37
+ "o_proj",
38
+ "down_proj"
39
+ ],
40
+ "target_parameters": null,
41
+ "task_type": "CAUSAL_LM",
42
+ "trainable_token_indices": null,
43
+ "use_dora": false,
44
+ "use_qalora": false,
45
+ "use_rslora": false
46
+ }
checkpoint-1500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:481e14187cffc68d242e610ea9cf352f6981a3bf2562bc9efd5dbb6cf9b7f6ce
3
+ size 319876480
checkpoint-1500/chat_template.jinja ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {% if not add_generation_prompt is defined %}
2
+ {% set add_generation_prompt = false %}
3
+ {% endif %}
4
+ {%- set ns = namespace(found=false) -%}
5
+ {%- for message in messages -%}
6
+ {%- if message['role'] == 'system' -%}
7
+ {%- set ns.found = true -%}
8
+ {%- endif -%}
9
+ {%- endfor -%}
10
+ {{bos_token}}{%- if not ns.found -%}
11
+ {{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\n'}}
12
+ {%- endif %}
13
+ {%- for message in messages %}
14
+ {%- if message['role'] == 'system' %}
15
+ {{ message['content'] }}
16
+ {%- else %}
17
+ {%- if message['role'] == 'user' %}
18
+ {{'### Instruction:\n' + message['content'] + '\n'}}
19
+ {%- else %}
20
+ {{'### Response:\n' + message['content'] + '\n<|EOT|>\n'}}
21
+ {%- endif %}
22
+ {%- endif %}
23
+ {%- endfor %}
24
+ {% if add_generation_prompt %}
25
+ {{'### Response:'}}
26
+ {% endif %}
checkpoint-1500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9eae64352988b60f836fc132540e46d021cdbea2a54dc46d46555733a8a46359
3
+ size 640009746
checkpoint-1500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fdc105621c90e568a930ffd338ffe14df6dd4eba2c129a02634319438132945
3
+ size 14244
checkpoint-1500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ca2c5429544343e44529b54c79bdf883a909c08b94343663c4521db76d640b2
3
+ size 1064
checkpoint-1500/special_tokens_map.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|EOT|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|EOT|>"
17
+ }
checkpoint-1500/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1500/tokenizer_config.json ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "32000": {
7
+ "content": "õ",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "32001": {
15
+ "content": "÷",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "32002": {
23
+ "content": "Á",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32003": {
31
+ "content": "ý",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "32004": {
39
+ "content": "À",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "32005": {
47
+ "content": "ÿ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "32006": {
55
+ "content": "ø",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "32007": {
63
+ "content": "ú",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "32008": {
71
+ "content": "þ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "32009": {
79
+ "content": "ü",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "32010": {
87
+ "content": "ù",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "32011": {
95
+ "content": "ö",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "32012": {
103
+ "content": "û",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "32013": {
111
+ "content": "<|begin▁of▁sentence|>",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32014": {
119
+ "content": "<|end▁of▁sentence|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32015": {
127
+ "content": "<|fim▁hole|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "32016": {
135
+ "content": "<|fim▁begin|>",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "32017": {
143
+ "content": "<|fim▁end|>",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "32018": {
151
+ "content": "<pad>",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "32019": {
159
+ "content": "<|User|>",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "32020": {
167
+ "content": "<|Assistant|>",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "32021": {
175
+ "content": "<|EOT|>",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": true
181
+ }
182
+ },
183
+ "bos_token": "<|begin▁of▁sentence|>",
184
+ "clean_up_tokenization_spaces": false,
185
+ "eos_token": "<|EOT|>",
186
+ "extra_special_tokens": {},
187
+ "legacy": true,
188
+ "model_max_length": 16384,
189
+ "pad_token": "<|EOT|>",
190
+ "sp_model_kwargs": {},
191
+ "tokenizer_class": "LlamaTokenizerFast",
192
+ "unk_token": null,
193
+ "use_default_system_prompt": false
194
+ }
checkpoint-1500/trainer_state.json ADDED
@@ -0,0 +1,1567 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.435241575314657,
6
+ "eval_steps": 500,
7
+ "global_step": 1500,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "entropy": 2.0573711842298508,
14
+ "epoch": 0.016240357287860333,
15
+ "grad_norm": 0.98046875,
16
+ "learning_rate": 3.2142857142857144e-05,
17
+ "loss": 2.3979,
18
+ "mean_token_accuracy": 0.5674526583403349,
19
+ "num_tokens": 319222.0,
20
+ "step": 10
21
+ },
22
+ {
23
+ "entropy": 1.6298254258930682,
24
+ "epoch": 0.032480714575720666,
25
+ "grad_norm": 0.7734375,
26
+ "learning_rate": 6.785714285714286e-05,
27
+ "loss": 1.7067,
28
+ "mean_token_accuracy": 0.6522471688687801,
29
+ "num_tokens": 635410.0,
30
+ "step": 20
31
+ },
32
+ {
33
+ "entropy": 0.8830645218491554,
34
+ "epoch": 0.048721071863580996,
35
+ "grad_norm": 0.28125,
36
+ "learning_rate": 0.00010357142857142859,
37
+ "loss": 0.8894,
38
+ "mean_token_accuracy": 0.791144409775734,
39
+ "num_tokens": 952489.0,
40
+ "step": 30
41
+ },
42
+ {
43
+ "entropy": 0.6340911261737346,
44
+ "epoch": 0.06496142915144133,
45
+ "grad_norm": 0.2236328125,
46
+ "learning_rate": 0.0001392857142857143,
47
+ "loss": 0.6371,
48
+ "mean_token_accuracy": 0.840929938852787,
49
+ "num_tokens": 1271722.0,
50
+ "step": 40
51
+ },
52
+ {
53
+ "entropy": 0.5732324108481407,
54
+ "epoch": 0.08120178643930166,
55
+ "grad_norm": 0.33203125,
56
+ "learning_rate": 0.000175,
57
+ "loss": 0.5747,
58
+ "mean_token_accuracy": 0.8537561506032944,
59
+ "num_tokens": 1590635.0,
60
+ "step": 50
61
+ },
62
+ {
63
+ "entropy": 0.5194318823516368,
64
+ "epoch": 0.09744214372716199,
65
+ "grad_norm": 0.115234375,
66
+ "learning_rate": 0.0001999986169583868,
67
+ "loss": 0.5268,
68
+ "mean_token_accuracy": 0.8640895910561085,
69
+ "num_tokens": 1908010.0,
70
+ "step": 60
71
+ },
72
+ {
73
+ "entropy": 0.49497435204684737,
74
+ "epoch": 0.11368250101502234,
75
+ "grad_norm": 0.125,
76
+ "learning_rate": 0.00019997403061615897,
77
+ "loss": 0.4986,
78
+ "mean_token_accuracy": 0.8717949956655502,
79
+ "num_tokens": 2225569.0,
80
+ "step": 70
81
+ },
82
+ {
83
+ "entropy": 0.4971678379923105,
84
+ "epoch": 0.12992285830288267,
85
+ "grad_norm": 0.11083984375,
86
+ "learning_rate": 0.0001999187187134847,
87
+ "loss": 0.4924,
88
+ "mean_token_accuracy": 0.8731547556817532,
89
+ "num_tokens": 2539488.0,
90
+ "step": 80
91
+ },
92
+ {
93
+ "entropy": 0.5084386952221394,
94
+ "epoch": 0.146163215590743,
95
+ "grad_norm": 0.1083984375,
96
+ "learning_rate": 0.00019983269824967067,
97
+ "loss": 0.5163,
98
+ "mean_token_accuracy": 0.8671703346073627,
99
+ "num_tokens": 2857760.0,
100
+ "step": 90
101
+ },
102
+ {
103
+ "entropy": 0.476475191116333,
104
+ "epoch": 0.16240357287860333,
105
+ "grad_norm": 0.11279296875,
106
+ "learning_rate": 0.00019971599566185206,
107
+ "loss": 0.4758,
108
+ "mean_token_accuracy": 0.876344844698906,
109
+ "num_tokens": 3174136.0,
110
+ "step": 100
111
+ },
112
+ {
113
+ "entropy": 0.48804047554731367,
114
+ "epoch": 0.17864393016646365,
115
+ "grad_norm": 0.1025390625,
116
+ "learning_rate": 0.00019956864681686744,
117
+ "loss": 0.4837,
118
+ "mean_token_accuracy": 0.8742976881563663,
119
+ "num_tokens": 3489505.0,
120
+ "step": 110
121
+ },
122
+ {
123
+ "entropy": 0.4607066061347723,
124
+ "epoch": 0.19488428745432398,
125
+ "grad_norm": 0.255859375,
126
+ "learning_rate": 0.00019939069700023563,
127
+ "loss": 0.4639,
128
+ "mean_token_accuracy": 0.879499676078558,
129
+ "num_tokens": 3807935.0,
130
+ "step": 120
131
+ },
132
+ {
133
+ "entropy": 0.4422083988785744,
134
+ "epoch": 0.21112464474218431,
135
+ "grad_norm": 0.099609375,
136
+ "learning_rate": 0.00019918220090223775,
137
+ "loss": 0.4431,
138
+ "mean_token_accuracy": 0.8831395357847214,
139
+ "num_tokens": 4125137.0,
140
+ "step": 130
141
+ },
142
+ {
143
+ "entropy": 0.44356597438454626,
144
+ "epoch": 0.22736500203004467,
145
+ "grad_norm": 0.10595703125,
146
+ "learning_rate": 0.00019894322260110927,
147
+ "loss": 0.4373,
148
+ "mean_token_accuracy": 0.8849747203290462,
149
+ "num_tokens": 4442538.0,
150
+ "step": 140
151
+ },
152
+ {
153
+ "entropy": 0.44916940554976464,
154
+ "epoch": 0.243605359317905,
155
+ "grad_norm": 0.11083984375,
156
+ "learning_rate": 0.00019867383554334603,
157
+ "loss": 0.4473,
158
+ "mean_token_accuracy": 0.8828106552362442,
159
+ "num_tokens": 4761703.0,
160
+ "step": 150
161
+ },
162
+ {
163
+ "entropy": 0.44491727463901043,
164
+ "epoch": 0.25984571660576533,
165
+ "grad_norm": 0.09716796875,
166
+ "learning_rate": 0.00019837412252113204,
167
+ "loss": 0.446,
168
+ "mean_token_accuracy": 0.8818246781826019,
169
+ "num_tokens": 5080459.0,
170
+ "step": 160
171
+ },
172
+ {
173
+ "entropy": 0.4443864993751049,
174
+ "epoch": 0.27608607389362566,
175
+ "grad_norm": 0.11474609375,
176
+ "learning_rate": 0.00019804417564689403,
177
+ "loss": 0.4424,
178
+ "mean_token_accuracy": 0.8833745121955872,
179
+ "num_tokens": 5394935.0,
180
+ "step": 170
181
+ },
182
+ {
183
+ "entropy": 0.43182576820254326,
184
+ "epoch": 0.292326431181486,
185
+ "grad_norm": 0.10302734375,
186
+ "learning_rate": 0.00019768409632499244,
187
+ "loss": 0.4337,
188
+ "mean_token_accuracy": 0.8853104099631309,
189
+ "num_tokens": 5711130.0,
190
+ "step": 180
191
+ },
192
+ {
193
+ "entropy": 0.4353721059858799,
194
+ "epoch": 0.3085667884693463,
195
+ "grad_norm": 0.10205078125,
196
+ "learning_rate": 0.00019729399522055603,
197
+ "loss": 0.4351,
198
+ "mean_token_accuracy": 0.8850096859037876,
199
+ "num_tokens": 6028009.0,
200
+ "step": 190
201
+ },
202
+ {
203
+ "entropy": 0.4161925382912159,
204
+ "epoch": 0.32480714575720665,
205
+ "grad_norm": 0.10107421875,
206
+ "learning_rate": 0.0001968739922254706,
207
+ "loss": 0.4118,
208
+ "mean_token_accuracy": 0.8901829145848751,
209
+ "num_tokens": 6345284.0,
210
+ "step": 200
211
+ },
212
+ {
213
+ "entropy": 0.4270293299108744,
214
+ "epoch": 0.341047503045067,
215
+ "grad_norm": 0.126953125,
216
+ "learning_rate": 0.00019642421642153198,
217
+ "loss": 0.4266,
218
+ "mean_token_accuracy": 0.885687505453825,
219
+ "num_tokens": 6664555.0,
220
+ "step": 210
221
+ },
222
+ {
223
+ "entropy": 0.4177013225853443,
224
+ "epoch": 0.3572878603329273,
225
+ "grad_norm": 0.09912109375,
226
+ "learning_rate": 0.0001959448060407748,
227
+ "loss": 0.4185,
228
+ "mean_token_accuracy": 0.8890490755438805,
229
+ "num_tokens": 6984869.0,
230
+ "step": 220
231
+ },
232
+ {
233
+ "entropy": 0.4492575516924262,
234
+ "epoch": 0.37352821762078764,
235
+ "grad_norm": 0.125,
236
+ "learning_rate": 0.00019543590842298857,
237
+ "loss": 0.4471,
238
+ "mean_token_accuracy": 0.8821755766868591,
239
+ "num_tokens": 7301522.0,
240
+ "step": 230
241
+ },
242
+ {
243
+ "entropy": 0.4262876145541668,
244
+ "epoch": 0.38976857490864797,
245
+ "grad_norm": 0.126953125,
246
+ "learning_rate": 0.0001948976799704351,
247
+ "loss": 0.4272,
248
+ "mean_token_accuracy": 0.8858069330453873,
249
+ "num_tokens": 7617411.0,
250
+ "step": 240
251
+ },
252
+ {
253
+ "entropy": 0.4227599944919348,
254
+ "epoch": 0.4060089321965083,
255
+ "grad_norm": 0.111328125,
256
+ "learning_rate": 0.0001943302860997807,
257
+ "loss": 0.4183,
258
+ "mean_token_accuracy": 0.889183484762907,
259
+ "num_tokens": 7932287.0,
260
+ "step": 250
261
+ },
262
+ {
263
+ "entropy": 0.4225012965500355,
264
+ "epoch": 0.42224928948436863,
265
+ "grad_norm": 0.173828125,
266
+ "learning_rate": 0.00019373390119125752,
267
+ "loss": 0.4241,
268
+ "mean_token_accuracy": 0.8874775715172291,
269
+ "num_tokens": 8249106.0,
270
+ "step": 260
271
+ },
272
+ {
273
+ "entropy": 0.4166328992694616,
274
+ "epoch": 0.438489646772229,
275
+ "grad_norm": 0.109375,
276
+ "learning_rate": 0.00019310870853507043,
277
+ "loss": 0.4183,
278
+ "mean_token_accuracy": 0.8885860778391361,
279
+ "num_tokens": 8564544.0,
280
+ "step": 270
281
+ },
282
+ {
283
+ "entropy": 0.38806356210261583,
284
+ "epoch": 0.45473000406008934,
285
+ "grad_norm": 0.11328125,
286
+ "learning_rate": 0.00019245490027506546,
287
+ "loss": 0.3836,
288
+ "mean_token_accuracy": 0.8962622597813606,
289
+ "num_tokens": 8883546.0,
290
+ "step": 280
291
+ },
292
+ {
293
+ "entropy": 0.388262290135026,
294
+ "epoch": 0.4709703613479497,
295
+ "grad_norm": 0.09130859375,
296
+ "learning_rate": 0.0001917726773496773,
297
+ "loss": 0.3847,
298
+ "mean_token_accuracy": 0.8955962382256984,
299
+ "num_tokens": 9199902.0,
300
+ "step": 290
301
+ },
302
+ {
303
+ "entropy": 0.40017246957868335,
304
+ "epoch": 0.48721071863581,
305
+ "grad_norm": 0.09716796875,
306
+ "learning_rate": 0.00019106224943017352,
307
+ "loss": 0.3984,
308
+ "mean_token_accuracy": 0.8926815405488014,
309
+ "num_tokens": 9518427.0,
310
+ "step": 300
311
+ },
312
+ {
313
+ "entropy": 0.39343364126980307,
314
+ "epoch": 0.5034510759236703,
315
+ "grad_norm": 0.09521484375,
316
+ "learning_rate": 0.00019032383485621546,
317
+ "loss": 0.3936,
318
+ "mean_token_accuracy": 0.8935227513313293,
319
+ "num_tokens": 9834801.0,
320
+ "step": 310
321
+ },
322
+ {
323
+ "entropy": 0.40088152755051853,
324
+ "epoch": 0.5196914332115307,
325
+ "grad_norm": 0.09423828125,
326
+ "learning_rate": 0.00018955766056875456,
327
+ "loss": 0.4013,
328
+ "mean_token_accuracy": 0.8928539358079434,
329
+ "num_tokens": 10150756.0,
330
+ "step": 320
331
+ },
332
+ {
333
+ "entropy": 0.3935076169669628,
334
+ "epoch": 0.535931790499391,
335
+ "grad_norm": 0.09619140625,
336
+ "learning_rate": 0.0001887639620402854,
337
+ "loss": 0.3894,
338
+ "mean_token_accuracy": 0.8937225684523582,
339
+ "num_tokens": 10470119.0,
340
+ "step": 330
341
+ },
342
+ {
343
+ "entropy": 0.4141834359616041,
344
+ "epoch": 0.5521721477872513,
345
+ "grad_norm": 0.099609375,
346
+ "learning_rate": 0.00018794298320247665,
347
+ "loss": 0.415,
348
+ "mean_token_accuracy": 0.8895114719867706,
349
+ "num_tokens": 10787249.0,
350
+ "step": 340
351
+ },
352
+ {
353
+ "entropy": 0.41944080144166945,
354
+ "epoch": 0.5684125050751117,
355
+ "grad_norm": 0.1162109375,
356
+ "learning_rate": 0.0001870949763712022,
357
+ "loss": 0.4151,
358
+ "mean_token_accuracy": 0.8887378059327602,
359
+ "num_tokens": 11107800.0,
360
+ "step": 350
361
+ },
362
+ {
363
+ "entropy": 0.4085154063999653,
364
+ "epoch": 0.584652862362972,
365
+ "grad_norm": 0.123046875,
366
+ "learning_rate": 0.00018622020216899575,
367
+ "loss": 0.4067,
368
+ "mean_token_accuracy": 0.8906957127153874,
369
+ "num_tokens": 11424520.0,
370
+ "step": 360
371
+ },
372
+ {
373
+ "entropy": 0.41457892414182423,
374
+ "epoch": 0.6008932196508323,
375
+ "grad_norm": 0.1005859375,
376
+ "learning_rate": 0.00018531892944495195,
377
+ "loss": 0.4139,
378
+ "mean_token_accuracy": 0.8893011771142483,
379
+ "num_tokens": 11743854.0,
380
+ "step": 370
381
+ },
382
+ {
383
+ "entropy": 0.3982046090066433,
384
+ "epoch": 0.6171335769386926,
385
+ "grad_norm": 0.095703125,
386
+ "learning_rate": 0.00018439143519209984,
387
+ "loss": 0.3972,
388
+ "mean_token_accuracy": 0.8931242369115353,
389
+ "num_tokens": 12060493.0,
390
+ "step": 380
391
+ },
392
+ {
393
+ "entropy": 0.37617460917681456,
394
+ "epoch": 0.633373934226553,
395
+ "grad_norm": 0.17578125,
396
+ "learning_rate": 0.00018343800446227285,
397
+ "loss": 0.3737,
398
+ "mean_token_accuracy": 0.8988998346030712,
399
+ "num_tokens": 12377614.0,
400
+ "step": 390
401
+ },
402
+ {
403
+ "entropy": 0.38792264480143784,
404
+ "epoch": 0.6496142915144133,
405
+ "grad_norm": 0.1025390625,
406
+ "learning_rate": 0.00018245893027850254,
407
+ "loss": 0.3863,
408
+ "mean_token_accuracy": 0.8964896731078624,
409
+ "num_tokens": 12695713.0,
410
+ "step": 400
411
+ },
412
+ {
413
+ "entropy": 0.3779356569051743,
414
+ "epoch": 0.6658546488022736,
415
+ "grad_norm": 0.09912109375,
416
+ "learning_rate": 0.00018145451354496198,
417
+ "loss": 0.377,
418
+ "mean_token_accuracy": 0.8985928252339364,
419
+ "num_tokens": 13011198.0,
420
+ "step": 410
421
+ },
422
+ {
423
+ "entropy": 0.40948784444481134,
424
+ "epoch": 0.682095006090134,
425
+ "grad_norm": 0.1162109375,
426
+ "learning_rate": 0.0001804250629544874,
427
+ "loss": 0.4077,
428
+ "mean_token_accuracy": 0.8911456301808357,
429
+ "num_tokens": 13329544.0,
430
+ "step": 420
431
+ },
432
+ {
433
+ "entropy": 0.38341086860746143,
434
+ "epoch": 0.6983353633779943,
435
+ "grad_norm": 0.10888671875,
436
+ "learning_rate": 0.00017937089489370594,
437
+ "loss": 0.3829,
438
+ "mean_token_accuracy": 0.8969453655183315,
439
+ "num_tokens": 13645469.0,
440
+ "step": 430
441
+ },
442
+ {
443
+ "entropy": 0.3890859391540289,
444
+ "epoch": 0.7145757206658546,
445
+ "grad_norm": 0.10400390625,
446
+ "learning_rate": 0.0001782923333457987,
447
+ "loss": 0.3875,
448
+ "mean_token_accuracy": 0.8961056731641293,
449
+ "num_tokens": 13964383.0,
450
+ "step": 440
451
+ },
452
+ {
453
+ "entropy": 0.3823310313746333,
454
+ "epoch": 0.730816077953715,
455
+ "grad_norm": 0.09375,
456
+ "learning_rate": 0.0001771897097909294,
457
+ "loss": 0.3857,
458
+ "mean_token_accuracy": 0.8955351069569588,
459
+ "num_tokens": 14284139.0,
460
+ "step": 450
461
+ },
462
+ {
463
+ "entropy": 0.372044226154685,
464
+ "epoch": 0.7470564352415753,
465
+ "grad_norm": 0.1044921875,
466
+ "learning_rate": 0.00017606336310436874,
467
+ "loss": 0.3703,
468
+ "mean_token_accuracy": 0.8989921748638153,
469
+ "num_tokens": 14601084.0,
470
+ "step": 460
471
+ },
472
+ {
473
+ "entropy": 0.3764212913811207,
474
+ "epoch": 0.7632967925294356,
475
+ "grad_norm": 0.10546875,
476
+ "learning_rate": 0.00017491363945234593,
477
+ "loss": 0.3708,
478
+ "mean_token_accuracy": 0.8989950515329838,
479
+ "num_tokens": 14919347.0,
480
+ "step": 470
481
+ },
482
+ {
483
+ "entropy": 0.3796376219019294,
484
+ "epoch": 0.7795371498172959,
485
+ "grad_norm": 0.0986328125,
486
+ "learning_rate": 0.00017374089218565972,
487
+ "loss": 0.3777,
488
+ "mean_token_accuracy": 0.8979221723973752,
489
+ "num_tokens": 15235024.0,
490
+ "step": 480
491
+ },
492
+ {
493
+ "entropy": 0.3780976843088865,
494
+ "epoch": 0.7957775071051563,
495
+ "grad_norm": 0.09326171875,
496
+ "learning_rate": 0.000172545481731081,
497
+ "loss": 0.3814,
498
+ "mean_token_accuracy": 0.8970133177936077,
499
+ "num_tokens": 15555890.0,
500
+ "step": 490
501
+ },
502
+ {
503
+ "entropy": 0.36868189480155705,
504
+ "epoch": 0.8120178643930166,
505
+ "grad_norm": 0.1318359375,
506
+ "learning_rate": 0.00017132777548058102,
507
+ "loss": 0.367,
508
+ "mean_token_accuracy": 0.8997100129723549,
509
+ "num_tokens": 15871127.0,
510
+ "step": 500
511
+ },
512
+ {
513
+ "epoch": 0.8120178643930166,
514
+ "eval_entropy": 0.3875140378834637,
515
+ "eval_loss": 0.38122546672821045,
516
+ "eval_mean_token_accuracy": 0.8967177114868892,
517
+ "eval_num_tokens": 15871127.0,
518
+ "eval_runtime": 177.0916,
519
+ "eval_samples_per_second": 2.953,
520
+ "eval_steps_per_second": 1.479,
521
+ "step": 500
522
+ },
523
+ {
524
+ "entropy": 0.36098182667046785,
525
+ "epoch": 0.8282582216808769,
526
+ "grad_norm": 0.091796875,
527
+ "learning_rate": 0.00017008814767841872,
528
+ "loss": 0.358,
529
+ "mean_token_accuracy": 0.9020477868616581,
530
+ "num_tokens": 16186646.0,
531
+ "step": 510
532
+ },
533
+ {
534
+ "entropy": 0.37107769679278135,
535
+ "epoch": 0.8444985789687373,
536
+ "grad_norm": 0.0966796875,
537
+ "learning_rate": 0.00016882697930612237,
538
+ "loss": 0.3667,
539
+ "mean_token_accuracy": 0.8997148185968399,
540
+ "num_tokens": 16505442.0,
541
+ "step": 520
542
+ },
543
+ {
544
+ "entropy": 0.36859209295362233,
545
+ "epoch": 0.8607389362565977,
546
+ "grad_norm": 0.09228515625,
547
+ "learning_rate": 0.00016754465796540028,
548
+ "loss": 0.3656,
549
+ "mean_token_accuracy": 0.9001396887004376,
550
+ "num_tokens": 16824612.0,
551
+ "step": 530
552
+ },
553
+ {
554
+ "entropy": 0.36337947361171247,
555
+ "epoch": 0.876979293544458,
556
+ "grad_norm": 0.095703125,
557
+ "learning_rate": 0.0001662415777590172,
558
+ "loss": 0.3653,
559
+ "mean_token_accuracy": 0.9004977688193321,
560
+ "num_tokens": 17147012.0,
561
+ "step": 540
562
+ },
563
+ {
564
+ "entropy": 0.38551054075360297,
565
+ "epoch": 0.8932196508323184,
566
+ "grad_norm": 0.10302734375,
567
+ "learning_rate": 0.00016491813916967246,
568
+ "loss": 0.3841,
569
+ "mean_token_accuracy": 0.8968335554003716,
570
+ "num_tokens": 17463603.0,
571
+ "step": 550
572
+ },
573
+ {
574
+ "entropy": 0.3718857761472464,
575
+ "epoch": 0.9094600081201787,
576
+ "grad_norm": 0.1025390625,
577
+ "learning_rate": 0.00016357474893691757,
578
+ "loss": 0.3694,
579
+ "mean_token_accuracy": 0.8994779132306576,
580
+ "num_tokens": 17780634.0,
581
+ "step": 560
582
+ },
583
+ {
584
+ "entropy": 0.3478269662708044,
585
+ "epoch": 0.925700365408039,
586
+ "grad_norm": 0.1005859375,
587
+ "learning_rate": 0.00016221181993215068,
588
+ "loss": 0.3495,
589
+ "mean_token_accuracy": 0.9044472806155681,
590
+ "num_tokens": 18099787.0,
591
+ "step": 570
592
+ },
593
+ {
594
+ "entropy": 0.3706334102898836,
595
+ "epoch": 0.9419407226958993,
596
+ "grad_norm": 0.10107421875,
597
+ "learning_rate": 0.00016082977103172664,
598
+ "loss": 0.3643,
599
+ "mean_token_accuracy": 0.9007264509797096,
600
+ "num_tokens": 18417572.0,
601
+ "step": 580
602
+ },
603
+ {
604
+ "entropy": 0.33980775382369754,
605
+ "epoch": 0.9581810799837597,
606
+ "grad_norm": 0.099609375,
607
+ "learning_rate": 0.00015942902698822136,
608
+ "loss": 0.339,
609
+ "mean_token_accuracy": 0.9067365050315856,
610
+ "num_tokens": 18734911.0,
611
+ "step": 590
612
+ },
613
+ {
614
+ "entropy": 0.36088257618248465,
615
+ "epoch": 0.97442143727162,
616
+ "grad_norm": 0.10693359375,
617
+ "learning_rate": 0.00015801001829989032,
618
+ "loss": 0.3576,
619
+ "mean_token_accuracy": 0.9025222927331924,
620
+ "num_tokens": 19054345.0,
621
+ "step": 600
622
+ },
623
+ {
624
+ "entropy": 0.35844882633537056,
625
+ "epoch": 0.9906617945594803,
626
+ "grad_norm": 0.10400390625,
627
+ "learning_rate": 0.0001565731810783613,
628
+ "loss": 0.3553,
629
+ "mean_token_accuracy": 0.9028041236102581,
630
+ "num_tokens": 19371809.0,
631
+ "step": 610
632
+ },
633
+ {
634
+ "entropy": 0.3564173472233308,
635
+ "epoch": 1.0064961429151442,
636
+ "grad_norm": 0.11181640625,
637
+ "learning_rate": 0.00015511895691460188,
638
+ "loss": 0.353,
639
+ "mean_token_accuracy": 0.9035867773569547,
640
+ "num_tokens": 19684212.0,
641
+ "step": 620
642
+ },
643
+ {
644
+ "entropy": 0.3372783612459898,
645
+ "epoch": 1.0227365002030044,
646
+ "grad_norm": 0.1064453125,
647
+ "learning_rate": 0.00015364779274320255,
648
+ "loss": 0.3362,
649
+ "mean_token_accuracy": 0.9072924487292766,
650
+ "num_tokens": 20003357.0,
651
+ "step": 630
652
+ },
653
+ {
654
+ "entropy": 0.3311926079913974,
655
+ "epoch": 1.0389768574908649,
656
+ "grad_norm": 0.09912109375,
657
+ "learning_rate": 0.00015216014070501834,
658
+ "loss": 0.3244,
659
+ "mean_token_accuracy": 0.9089326687157154,
660
+ "num_tokens": 20322614.0,
661
+ "step": 640
662
+ },
663
+ {
664
+ "entropy": 0.33821379821747544,
665
+ "epoch": 1.055217214778725,
666
+ "grad_norm": 0.09912109375,
667
+ "learning_rate": 0.0001506564580082096,
668
+ "loss": 0.3388,
669
+ "mean_token_accuracy": 0.9062777034938335,
670
+ "num_tokens": 20635631.0,
671
+ "step": 650
672
+ },
673
+ {
674
+ "entropy": 0.3465416576713324,
675
+ "epoch": 1.0714575720665855,
676
+ "grad_norm": 0.1083984375,
677
+ "learning_rate": 0.00014913720678772584,
678
+ "loss": 0.3455,
679
+ "mean_token_accuracy": 0.9043642178177833,
680
+ "num_tokens": 20955241.0,
681
+ "step": 660
682
+ },
683
+ {
684
+ "entropy": 0.33202757611870765,
685
+ "epoch": 1.0876979293544458,
686
+ "grad_norm": 0.10595703125,
687
+ "learning_rate": 0.00014760285396327532,
688
+ "loss": 0.3277,
689
+ "mean_token_accuracy": 0.9081737406551837,
690
+ "num_tokens": 21269871.0,
691
+ "step": 670
692
+ },
693
+ {
694
+ "entropy": 0.30594254843890667,
695
+ "epoch": 1.1039382866423062,
696
+ "grad_norm": 0.140625,
697
+ "learning_rate": 0.000146053871095824,
698
+ "loss": 0.3029,
699
+ "mean_token_accuracy": 0.9145903818309307,
700
+ "num_tokens": 21586356.0,
701
+ "step": 680
702
+ },
703
+ {
704
+ "entropy": 0.31971859056502583,
705
+ "epoch": 1.1201786439301664,
706
+ "grad_norm": 0.107421875,
707
+ "learning_rate": 0.00014449073424266837,
708
+ "loss": 0.3133,
709
+ "mean_token_accuracy": 0.9111780665814877,
710
+ "num_tokens": 21905514.0,
711
+ "step": 690
712
+ },
713
+ {
714
+ "entropy": 0.32340758945792913,
715
+ "epoch": 1.1364190012180269,
716
+ "grad_norm": 0.1005859375,
717
+ "learning_rate": 0.0001429139238111259,
718
+ "loss": 0.3199,
719
+ "mean_token_accuracy": 0.910588438808918,
720
+ "num_tokens": 22224116.0,
721
+ "step": 700
722
+ },
723
+ {
724
+ "entropy": 0.30627013817429544,
725
+ "epoch": 1.152659358505887,
726
+ "grad_norm": 0.11474609375,
727
+ "learning_rate": 0.00014132392441088898,
728
+ "loss": 0.3062,
729
+ "mean_token_accuracy": 0.9141925357282161,
730
+ "num_tokens": 22541518.0,
731
+ "step": 710
732
+ },
733
+ {
734
+ "entropy": 0.34387709144502876,
735
+ "epoch": 1.1688997157937475,
736
+ "grad_norm": 0.10986328125,
737
+ "learning_rate": 0.00013972122470508726,
738
+ "loss": 0.3388,
739
+ "mean_token_accuracy": 0.9059014208614826,
740
+ "num_tokens": 22857809.0,
741
+ "step": 720
742
+ },
743
+ {
744
+ "entropy": 0.3105178466066718,
745
+ "epoch": 1.1851400730816077,
746
+ "grad_norm": 0.103515625,
747
+ "learning_rate": 0.00013810631726010405,
748
+ "loss": 0.3113,
749
+ "mean_token_accuracy": 0.912415674328804,
750
+ "num_tokens": 23175061.0,
751
+ "step": 730
752
+ },
753
+ {
754
+ "entropy": 0.32021520137786863,
755
+ "epoch": 1.2013804303694682,
756
+ "grad_norm": 0.10205078125,
757
+ "learning_rate": 0.00013647969839419334,
758
+ "loss": 0.3166,
759
+ "mean_token_accuracy": 0.9124397613108158,
760
+ "num_tokens": 23492422.0,
761
+ "step": 740
762
+ },
763
+ {
764
+ "entropy": 0.33215807750821114,
765
+ "epoch": 1.2176207876573284,
766
+ "grad_norm": 0.10693359375,
767
+ "learning_rate": 0.00013484186802494345,
768
+ "loss": 0.3288,
769
+ "mean_token_accuracy": 0.9079324699938297,
770
+ "num_tokens": 23811312.0,
771
+ "step": 750
772
+ },
773
+ {
774
+ "entropy": 0.3269189100712538,
775
+ "epoch": 1.2338611449451888,
776
+ "grad_norm": 0.12353515625,
777
+ "learning_rate": 0.00013319332951563495,
778
+ "loss": 0.3229,
779
+ "mean_token_accuracy": 0.9100485563278198,
780
+ "num_tokens": 24127363.0,
781
+ "step": 760
782
+ },
783
+ {
784
+ "entropy": 0.32415517419576645,
785
+ "epoch": 1.250101502233049,
786
+ "grad_norm": 0.10498046875,
787
+ "learning_rate": 0.0001315345895205389,
788
+ "loss": 0.3218,
789
+ "mean_token_accuracy": 0.9100560195744037,
790
+ "num_tokens": 24443515.0,
791
+ "step": 770
792
+ },
793
+ {
794
+ "entropy": 0.3075957763940096,
795
+ "epoch": 1.2663418595209095,
796
+ "grad_norm": 0.107421875,
797
+ "learning_rate": 0.0001298661578292044,
798
+ "loss": 0.3085,
799
+ "mean_token_accuracy": 0.9134799301624298,
800
+ "num_tokens": 24759656.0,
801
+ "step": 780
802
+ },
803
+ {
804
+ "entropy": 0.33256804049015043,
805
+ "epoch": 1.2825822168087697,
806
+ "grad_norm": 0.11572265625,
807
+ "learning_rate": 0.00012818854720978196,
808
+ "loss": 0.3283,
809
+ "mean_token_accuracy": 0.9092446401715278,
810
+ "num_tokens": 25076124.0,
811
+ "step": 790
812
+ },
813
+ {
814
+ "entropy": 0.3044602788053453,
815
+ "epoch": 1.2988225740966302,
816
+ "grad_norm": 0.109375,
817
+ "learning_rate": 0.00012650227325143191,
818
+ "loss": 0.2998,
819
+ "mean_token_accuracy": 0.9158783234655857,
820
+ "num_tokens": 25394550.0,
821
+ "step": 800
822
+ },
823
+ {
824
+ "entropy": 0.3089112024754286,
825
+ "epoch": 1.3150629313844906,
826
+ "grad_norm": 0.1181640625,
827
+ "learning_rate": 0.0001248078542058653,
828
+ "loss": 0.3065,
829
+ "mean_token_accuracy": 0.9139430224895477,
830
+ "num_tokens": 25713937.0,
831
+ "step": 810
832
+ },
833
+ {
834
+ "entropy": 0.3199151481501758,
835
+ "epoch": 1.3313032886723508,
836
+ "grad_norm": 0.1064453125,
837
+ "learning_rate": 0.00012310581082806713,
838
+ "loss": 0.3153,
839
+ "mean_token_accuracy": 0.9130744747817516,
840
+ "num_tokens": 26033627.0,
841
+ "step": 820
842
+ },
843
+ {
844
+ "entropy": 0.3134147599339485,
845
+ "epoch": 1.347543645960211,
846
+ "grad_norm": 0.10888671875,
847
+ "learning_rate": 0.0001213966662162496,
848
+ "loss": 0.3158,
849
+ "mean_token_accuracy": 0.9115599945187569,
850
+ "num_tokens": 26351334.0,
851
+ "step": 830
852
+ },
853
+ {
854
+ "entropy": 0.30595332104712725,
855
+ "epoch": 1.3637840032480715,
856
+ "grad_norm": 0.11376953125,
857
+ "learning_rate": 0.00011968094565108572,
858
+ "loss": 0.2998,
859
+ "mean_token_accuracy": 0.9158065438270568,
860
+ "num_tokens": 26670167.0,
861
+ "step": 840
862
+ },
863
+ {
864
+ "entropy": 0.3209634754806757,
865
+ "epoch": 1.380024360535932,
866
+ "grad_norm": 0.10693359375,
867
+ "learning_rate": 0.00011795917643427179,
868
+ "loss": 0.3185,
869
+ "mean_token_accuracy": 0.9116993598639965,
870
+ "num_tokens": 26987963.0,
871
+ "step": 850
872
+ },
873
+ {
874
+ "entropy": 0.31424548048526046,
875
+ "epoch": 1.3962647178237921,
876
+ "grad_norm": 0.1171875,
877
+ "learning_rate": 0.0001162318877264691,
878
+ "loss": 0.3089,
879
+ "mean_token_accuracy": 0.9129889853298664,
880
+ "num_tokens": 27308192.0,
881
+ "step": 860
882
+ },
883
+ {
884
+ "entropy": 0.33518767151981593,
885
+ "epoch": 1.4125050751116524,
886
+ "grad_norm": 0.11572265625,
887
+ "learning_rate": 0.00011449961038467389,
888
+ "loss": 0.3334,
889
+ "mean_token_accuracy": 0.907250489294529,
890
+ "num_tokens": 27627277.0,
891
+ "step": 870
892
+ },
893
+ {
894
+ "entropy": 0.32196133993566034,
895
+ "epoch": 1.4287454323995128,
896
+ "grad_norm": 0.11083984375,
897
+ "learning_rate": 0.00011276287679906639,
898
+ "loss": 0.3235,
899
+ "mean_token_accuracy": 0.9093112558126449,
900
+ "num_tokens": 27943368.0,
901
+ "step": 880
902
+ },
903
+ {
904
+ "entropy": 0.3061803586781025,
905
+ "epoch": 1.4449857896873732,
906
+ "grad_norm": 0.115234375,
907
+ "learning_rate": 0.00011102222072938832,
908
+ "loss": 0.3011,
909
+ "mean_token_accuracy": 0.915228334069252,
910
+ "num_tokens": 28259836.0,
911
+ "step": 890
912
+ },
913
+ {
914
+ "entropy": 0.3232524123042822,
915
+ "epoch": 1.4612261469752335,
916
+ "grad_norm": 0.111328125,
917
+ "learning_rate": 0.00010927817714089973,
918
+ "loss": 0.3191,
919
+ "mean_token_accuracy": 0.9117089517414569,
920
+ "num_tokens": 28580230.0,
921
+ "step": 900
922
+ },
923
+ {
924
+ "entropy": 0.33082296065986155,
925
+ "epoch": 1.4774665042630937,
926
+ "grad_norm": 0.11962890625,
927
+ "learning_rate": 0.00010753128203996519,
928
+ "loss": 0.3269,
929
+ "mean_token_accuracy": 0.9086541675031186,
930
+ "num_tokens": 28898617.0,
931
+ "step": 910
932
+ },
933
+ {
934
+ "entropy": 0.3250410893931985,
935
+ "epoch": 1.4937068615509541,
936
+ "grad_norm": 0.150390625,
937
+ "learning_rate": 0.00010578207230932,
938
+ "loss": 0.319,
939
+ "mean_token_accuracy": 0.9112100295722485,
940
+ "num_tokens": 29215055.0,
941
+ "step": 920
942
+ },
943
+ {
944
+ "entropy": 0.3142668510787189,
945
+ "epoch": 1.5099472188388146,
946
+ "grad_norm": 0.1123046875,
947
+ "learning_rate": 0.00010403108554306717,
948
+ "loss": 0.3122,
949
+ "mean_token_accuracy": 0.9117408633232117,
950
+ "num_tokens": 29529393.0,
951
+ "step": 930
952
+ },
953
+ {
954
+ "entropy": 0.3135885909199715,
955
+ "epoch": 1.5261875761266748,
956
+ "grad_norm": 0.11572265625,
957
+ "learning_rate": 0.00010227885988145563,
958
+ "loss": 0.3075,
959
+ "mean_token_accuracy": 0.9139442838728428,
960
+ "num_tokens": 29851116.0,
961
+ "step": 940
962
+ },
963
+ {
964
+ "entropy": 0.3046269157901406,
965
+ "epoch": 1.542427933414535,
966
+ "grad_norm": 0.10693359375,
967
+ "learning_rate": 0.00010052593384549082,
968
+ "loss": 0.3034,
969
+ "mean_token_accuracy": 0.9146199978888034,
970
+ "num_tokens": 30169222.0,
971
+ "step": 950
972
+ },
973
+ {
974
+ "entropy": 0.31176882088184354,
975
+ "epoch": 1.5586682907023954,
976
+ "grad_norm": 0.11767578125,
977
+ "learning_rate": 9.877284617142802e-05,
978
+ "loss": 0.3083,
979
+ "mean_token_accuracy": 0.9138757094740868,
980
+ "num_tokens": 30484117.0,
981
+ "step": 960
982
+ },
983
+ {
984
+ "entropy": 0.31525961998850105,
985
+ "epoch": 1.5749086479902559,
986
+ "grad_norm": 0.11328125,
987
+ "learning_rate": 9.702013564519954e-05,
988
+ "loss": 0.311,
989
+ "mean_token_accuracy": 0.9124061703681946,
990
+ "num_tokens": 30804341.0,
991
+ "step": 970
992
+ },
993
+ {
994
+ "entropy": 0.3192242424935102,
995
+ "epoch": 1.591149005278116,
996
+ "grad_norm": 0.1123046875,
997
+ "learning_rate": 9.526834093682685e-05,
998
+ "loss": 0.3172,
999
+ "mean_token_accuracy": 0.9116800054907799,
1000
+ "num_tokens": 31119505.0,
1001
+ "step": 980
1002
+ },
1003
+ {
1004
+ "entropy": 0.30036033764481546,
1005
+ "epoch": 1.6073893625659763,
1006
+ "grad_norm": 0.11376953125,
1007
+ "learning_rate": 9.351800043486823e-05,
1008
+ "loss": 0.298,
1009
+ "mean_token_accuracy": 0.9167301289737224,
1010
+ "num_tokens": 31433788.0,
1011
+ "step": 990
1012
+ },
1013
+ {
1014
+ "entropy": 0.3045342108234763,
1015
+ "epoch": 1.6236297198538368,
1016
+ "grad_norm": 0.11572265625,
1017
+ "learning_rate": 9.176965208095265e-05,
1018
+ "loss": 0.3011,
1019
+ "mean_token_accuracy": 0.915463775396347,
1020
+ "num_tokens": 31754135.0,
1021
+ "step": 1000
1022
+ },
1023
+ {
1024
+ "epoch": 1.6236297198538368,
1025
+ "eval_entropy": 0.3258335756436559,
1026
+ "eval_loss": 0.3386901617050171,
1027
+ "eval_mean_token_accuracy": 0.9073542472515398,
1028
+ "eval_num_tokens": 31754135.0,
1029
+ "eval_runtime": 177.024,
1030
+ "eval_samples_per_second": 2.954,
1031
+ "eval_steps_per_second": 1.48,
1032
+ "step": 1000
1033
+ },
1034
+ {
1035
+ "entropy": 0.3127696432173252,
1036
+ "epoch": 1.6398700771416972,
1037
+ "grad_norm": 0.11328125,
1038
+ "learning_rate": 9.002383320445163e-05,
1039
+ "loss": 0.3115,
1040
+ "mean_token_accuracy": 0.9123898334801197,
1041
+ "num_tokens": 32071093.0,
1042
+ "step": 1010
1043
+ },
1044
+ {
1045
+ "entropy": 0.32986372373998163,
1046
+ "epoch": 1.6561104344295574,
1047
+ "grad_norm": 0.11962890625,
1048
+ "learning_rate": 8.82810803573385e-05,
1049
+ "loss": 0.3244,
1050
+ "mean_token_accuracy": 0.9100102588534356,
1051
+ "num_tokens": 32391792.0,
1052
+ "step": 1020
1053
+ },
1054
+ {
1055
+ "entropy": 0.2965856045484543,
1056
+ "epoch": 1.6723507917174176,
1057
+ "grad_norm": 0.11279296875,
1058
+ "learning_rate": 8.654192914928739e-05,
1059
+ "loss": 0.2979,
1060
+ "mean_token_accuracy": 0.9166141480207444,
1061
+ "num_tokens": 32710598.0,
1062
+ "step": 1030
1063
+ },
1064
+ {
1065
+ "entropy": 0.2905145835131407,
1066
+ "epoch": 1.688591149005278,
1067
+ "grad_norm": 0.11376953125,
1068
+ "learning_rate": 8.480691408306097e-05,
1069
+ "loss": 0.2837,
1070
+ "mean_token_accuracy": 0.9194815665483475,
1071
+ "num_tokens": 33028070.0,
1072
+ "step": 1040
1073
+ },
1074
+ {
1075
+ "entropy": 0.2960927043110132,
1076
+ "epoch": 1.7048315062931385,
1077
+ "grad_norm": 0.1142578125,
1078
+ "learning_rate": 8.307656839023909e-05,
1079
+ "loss": 0.2971,
1080
+ "mean_token_accuracy": 0.9165702179074288,
1081
+ "num_tokens": 33345066.0,
1082
+ "step": 1050
1083
+ },
1084
+ {
1085
+ "entropy": 0.3149249626323581,
1086
+ "epoch": 1.7210718635809987,
1087
+ "grad_norm": 0.115234375,
1088
+ "learning_rate": 8.135142386733794e-05,
1089
+ "loss": 0.3076,
1090
+ "mean_token_accuracy": 0.9137652173638344,
1091
+ "num_tokens": 33662026.0,
1092
+ "step": 1060
1093
+ },
1094
+ {
1095
+ "entropy": 0.30231469254940746,
1096
+ "epoch": 1.7373122208688592,
1097
+ "grad_norm": 0.1181640625,
1098
+ "learning_rate": 7.963201071236971e-05,
1099
+ "loss": 0.302,
1100
+ "mean_token_accuracy": 0.9156768411397934,
1101
+ "num_tokens": 33978146.0,
1102
+ "step": 1070
1103
+ },
1104
+ {
1105
+ "entropy": 0.3091453406959772,
1106
+ "epoch": 1.7535525781567194,
1107
+ "grad_norm": 0.10400390625,
1108
+ "learning_rate": 7.791885736189447e-05,
1109
+ "loss": 0.3013,
1110
+ "mean_token_accuracy": 0.9143429882824421,
1111
+ "num_tokens": 34296547.0,
1112
+ "step": 1080
1113
+ },
1114
+ {
1115
+ "entropy": 0.2943760992027819,
1116
+ "epoch": 1.7697929354445798,
1117
+ "grad_norm": 0.12255859375,
1118
+ "learning_rate": 7.621249032861249e-05,
1119
+ "loss": 0.2944,
1120
+ "mean_token_accuracy": 0.9172896653413772,
1121
+ "num_tokens": 34613598.0,
1122
+ "step": 1090
1123
+ },
1124
+ {
1125
+ "entropy": 0.29523692447692157,
1126
+ "epoch": 1.7860332927324403,
1127
+ "grad_norm": 0.11669921875,
1128
+ "learning_rate": 7.451343403954856e-05,
1129
+ "loss": 0.2896,
1130
+ "mean_token_accuracy": 0.9178669437766075,
1131
+ "num_tokens": 34930737.0,
1132
+ "step": 1100
1133
+ },
1134
+ {
1135
+ "entropy": 0.30031131571158765,
1136
+ "epoch": 1.8022736500203005,
1137
+ "grad_norm": 0.11669921875,
1138
+ "learning_rate": 7.282221067487673e-05,
1139
+ "loss": 0.3018,
1140
+ "mean_token_accuracy": 0.9155903697013855,
1141
+ "num_tokens": 35247543.0,
1142
+ "step": 1110
1143
+ },
1144
+ {
1145
+ "entropy": 0.31066682981327176,
1146
+ "epoch": 1.8185140073081607,
1147
+ "grad_norm": 0.11181640625,
1148
+ "learning_rate": 7.113934000743598e-05,
1149
+ "loss": 0.3016,
1150
+ "mean_token_accuracy": 0.9159741207957268,
1151
+ "num_tokens": 35563846.0,
1152
+ "step": 1120
1153
+ },
1154
+ {
1155
+ "entropy": 0.3058769850060344,
1156
+ "epoch": 1.8347543645960211,
1157
+ "grad_norm": 0.11865234375,
1158
+ "learning_rate": 6.946533924298566e-05,
1159
+ "loss": 0.3064,
1160
+ "mean_token_accuracy": 0.9143878504633903,
1161
+ "num_tokens": 35880192.0,
1162
+ "step": 1130
1163
+ },
1164
+ {
1165
+ "entropy": 0.3041055051609874,
1166
+ "epoch": 1.8509947218838816,
1167
+ "grad_norm": 0.1279296875,
1168
+ "learning_rate": 6.78007228612497e-05,
1169
+ "loss": 0.3005,
1170
+ "mean_token_accuracy": 0.9166514202952385,
1171
+ "num_tokens": 36199306.0,
1172
+ "step": 1140
1173
+ },
1174
+ {
1175
+ "entropy": 0.2977755956351757,
1176
+ "epoch": 1.8672350791717418,
1177
+ "grad_norm": 0.11865234375,
1178
+ "learning_rate": 6.614600245779894e-05,
1179
+ "loss": 0.293,
1180
+ "mean_token_accuracy": 0.9174539044499397,
1181
+ "num_tokens": 36513771.0,
1182
+ "step": 1150
1183
+ },
1184
+ {
1185
+ "entropy": 0.29172705616801975,
1186
+ "epoch": 1.883475436459602,
1187
+ "grad_norm": 0.12890625,
1188
+ "learning_rate": 6.45016865868195e-05,
1189
+ "loss": 0.2892,
1190
+ "mean_token_accuracy": 0.9188766203820705,
1191
+ "num_tokens": 36831018.0,
1192
+ "step": 1160
1193
+ },
1194
+ {
1195
+ "entropy": 0.3056895272806287,
1196
+ "epoch": 1.8997157937474625,
1197
+ "grad_norm": 0.11083984375,
1198
+ "learning_rate": 6.286828060481626e-05,
1199
+ "loss": 0.3017,
1200
+ "mean_token_accuracy": 0.9152774572372436,
1201
+ "num_tokens": 37150959.0,
1202
+ "step": 1170
1203
+ },
1204
+ {
1205
+ "entropy": 0.3092532352544367,
1206
+ "epoch": 1.915956151035323,
1207
+ "grad_norm": 0.1240234375,
1208
+ "learning_rate": 6.124628651529875e-05,
1209
+ "loss": 0.3056,
1210
+ "mean_token_accuracy": 0.9151738248765469,
1211
+ "num_tokens": 37466849.0,
1212
+ "step": 1180
1213
+ },
1214
+ {
1215
+ "entropy": 0.29272988215088847,
1216
+ "epoch": 1.9321965083231831,
1217
+ "grad_norm": 0.126953125,
1218
+ "learning_rate": 5.963620281449778e-05,
1219
+ "loss": 0.2913,
1220
+ "mean_token_accuracy": 0.9184561900794506,
1221
+ "num_tokens": 37786024.0,
1222
+ "step": 1190
1223
+ },
1224
+ {
1225
+ "entropy": 0.28097219932824374,
1226
+ "epoch": 1.9484368656110433,
1227
+ "grad_norm": 0.1240234375,
1228
+ "learning_rate": 5.80385243381599e-05,
1229
+ "loss": 0.2751,
1230
+ "mean_token_accuracy": 0.9222856566309929,
1231
+ "num_tokens": 38104138.0,
1232
+ "step": 1200
1233
+ },
1234
+ {
1235
+ "entropy": 0.31009797360748054,
1236
+ "epoch": 1.9646772228989038,
1237
+ "grad_norm": 0.111328125,
1238
+ "learning_rate": 5.645374210946674e-05,
1239
+ "loss": 0.303,
1240
+ "mean_token_accuracy": 0.9149694032967091,
1241
+ "num_tokens": 38420179.0,
1242
+ "step": 1210
1243
+ },
1244
+ {
1245
+ "entropy": 0.28405070351436734,
1246
+ "epoch": 1.9809175801867642,
1247
+ "grad_norm": 0.12353515625,
1248
+ "learning_rate": 5.488234318812636e-05,
1249
+ "loss": 0.2821,
1250
+ "mean_token_accuracy": 0.9190818406641483,
1251
+ "num_tokens": 38738629.0,
1252
+ "step": 1220
1253
+ },
1254
+ {
1255
+ "entropy": 0.2817179733887315,
1256
+ "epoch": 1.9971579374746244,
1257
+ "grad_norm": 0.11083984375,
1258
+ "learning_rate": 5.332481052068243e-05,
1259
+ "loss": 0.278,
1260
+ "mean_token_accuracy": 0.9208778738975525,
1261
+ "num_tokens": 39056765.0,
1262
+ "step": 1230
1263
+ },
1264
+ {
1265
+ "entropy": 0.31614991583121127,
1266
+ "epoch": 2.0129922858302884,
1267
+ "grad_norm": 0.1162109375,
1268
+ "learning_rate": 5.1781622792087735e-05,
1269
+ "loss": 0.3034,
1270
+ "mean_token_accuracy": 0.915187330582203,
1271
+ "num_tokens": 39369100.0,
1272
+ "step": 1240
1273
+ },
1274
+ {
1275
+ "entropy": 0.2791068171150982,
1276
+ "epoch": 2.0292326431181484,
1277
+ "grad_norm": 0.1259765625,
1278
+ "learning_rate": 5.0253254278587195e-05,
1279
+ "loss": 0.2719,
1280
+ "mean_token_accuracy": 0.9229367971420288,
1281
+ "num_tokens": 39685618.0,
1282
+ "step": 1250
1283
+ },
1284
+ {
1285
+ "entropy": 0.26613821778446434,
1286
+ "epoch": 2.045473000406009,
1287
+ "grad_norm": 0.11962890625,
1288
+ "learning_rate": 4.8740174701956085e-05,
1289
+ "loss": 0.2589,
1290
+ "mean_token_accuracy": 0.9257113888859749,
1291
+ "num_tokens": 40006044.0,
1292
+ "step": 1260
1293
+ },
1294
+ {
1295
+ "entropy": 0.26739490162581203,
1296
+ "epoch": 2.0617133576938693,
1297
+ "grad_norm": 0.1298828125,
1298
+ "learning_rate": 4.724284908513802e-05,
1299
+ "loss": 0.258,
1300
+ "mean_token_accuracy": 0.9269713960587979,
1301
+ "num_tokens": 40324361.0,
1302
+ "step": 1270
1303
+ },
1304
+ {
1305
+ "entropy": 0.2743425130844116,
1306
+ "epoch": 2.0779537149817298,
1307
+ "grad_norm": 0.11865234375,
1308
+ "learning_rate": 4.576173760932658e-05,
1309
+ "loss": 0.2659,
1310
+ "mean_token_accuracy": 0.923577631264925,
1311
+ "num_tokens": 40641432.0,
1312
+ "step": 1280
1313
+ },
1314
+ {
1315
+ "entropy": 0.2544120085425675,
1316
+ "epoch": 2.0941940722695898,
1317
+ "grad_norm": 0.12109375,
1318
+ "learning_rate": 4.429729547253574e-05,
1319
+ "loss": 0.2481,
1320
+ "mean_token_accuracy": 0.9286975994706154,
1321
+ "num_tokens": 40961580.0,
1322
+ "step": 1290
1323
+ },
1324
+ {
1325
+ "entropy": 0.26631462909281256,
1326
+ "epoch": 2.11043442955745,
1327
+ "grad_norm": 0.11962890625,
1328
+ "learning_rate": 4.2849972749701104e-05,
1329
+ "loss": 0.2616,
1330
+ "mean_token_accuracy": 0.9257244259119034,
1331
+ "num_tokens": 41280252.0,
1332
+ "step": 1300
1333
+ },
1334
+ {
1335
+ "entropy": 0.2599586082622409,
1336
+ "epoch": 2.1266747868453106,
1337
+ "grad_norm": 0.1171875,
1338
+ "learning_rate": 4.142021425435612e-05,
1339
+ "loss": 0.2498,
1340
+ "mean_token_accuracy": 0.9278856895864009,
1341
+ "num_tokens": 41599525.0,
1342
+ "step": 1310
1343
+ },
1344
+ {
1345
+ "entropy": 0.2707246173173189,
1346
+ "epoch": 2.142915144133171,
1347
+ "grad_norm": 0.125,
1348
+ "learning_rate": 4.0008459401924936e-05,
1349
+ "loss": 0.2634,
1350
+ "mean_token_accuracy": 0.9242307640612125,
1351
+ "num_tokens": 41915594.0,
1352
+ "step": 1320
1353
+ },
1354
+ {
1355
+ "entropy": 0.2711412087082863,
1356
+ "epoch": 2.159155501421031,
1357
+ "grad_norm": 0.126953125,
1358
+ "learning_rate": 3.8615142074674625e-05,
1359
+ "loss": 0.2641,
1360
+ "mean_token_accuracy": 0.9243660770356655,
1361
+ "num_tokens": 42229552.0,
1362
+ "step": 1330
1363
+ },
1364
+ {
1365
+ "entropy": 0.26722599640488626,
1366
+ "epoch": 2.1753958587088915,
1367
+ "grad_norm": 0.126953125,
1368
+ "learning_rate": 3.7240690488367833e-05,
1369
+ "loss": 0.2595,
1370
+ "mean_token_accuracy": 0.9257352128624916,
1371
+ "num_tokens": 42547446.0,
1372
+ "step": 1340
1373
+ },
1374
+ {
1375
+ "entropy": 0.260900554433465,
1376
+ "epoch": 2.191636215996752,
1377
+ "grad_norm": 0.12890625,
1378
+ "learning_rate": 3.588552706065672e-05,
1379
+ "loss": 0.2532,
1380
+ "mean_token_accuracy": 0.9262578003108501,
1381
+ "num_tokens": 42866068.0,
1382
+ "step": 1350
1383
+ },
1384
+ {
1385
+ "entropy": 0.26855619475245474,
1386
+ "epoch": 2.2078765732846124,
1387
+ "grad_norm": 0.125,
1388
+ "learning_rate": 3.4550068281259295e-05,
1389
+ "loss": 0.2627,
1390
+ "mean_token_accuracy": 0.9253914162516594,
1391
+ "num_tokens": 43186333.0,
1392
+ "step": 1360
1393
+ },
1394
+ {
1395
+ "entropy": 0.25198941631242633,
1396
+ "epoch": 2.2241169305724724,
1397
+ "grad_norm": 0.1142578125,
1398
+ "learning_rate": 3.323472458395712e-05,
1399
+ "loss": 0.2422,
1400
+ "mean_token_accuracy": 0.9293296724557877,
1401
+ "num_tokens": 43502312.0,
1402
+ "step": 1370
1403
+ },
1404
+ {
1405
+ "entropy": 0.2605569550767541,
1406
+ "epoch": 2.240357287860333,
1407
+ "grad_norm": 0.115234375,
1408
+ "learning_rate": 3.19399002204547e-05,
1409
+ "loss": 0.2497,
1410
+ "mean_token_accuracy": 0.9273073241114617,
1411
+ "num_tokens": 43820947.0,
1412
+ "step": 1380
1413
+ },
1414
+ {
1415
+ "entropy": 0.2586898487061262,
1416
+ "epoch": 2.2565976451481933,
1417
+ "grad_norm": 0.1279296875,
1418
+ "learning_rate": 3.066599313613849e-05,
1419
+ "loss": 0.2539,
1420
+ "mean_token_accuracy": 0.9264877527952194,
1421
+ "num_tokens": 44138605.0,
1422
+ "step": 1390
1423
+ },
1424
+ {
1425
+ "entropy": 0.26510731065645815,
1426
+ "epoch": 2.2728380024360537,
1427
+ "grad_norm": 0.1220703125,
1428
+ "learning_rate": 2.9413394847774178e-05,
1429
+ "loss": 0.2613,
1430
+ "mean_token_accuracy": 0.9252329200506211,
1431
+ "num_tokens": 44454341.0,
1432
+ "step": 1400
1433
+ },
1434
+ {
1435
+ "entropy": 0.2784864826127887,
1436
+ "epoch": 2.2890783597239137,
1437
+ "grad_norm": 0.134765625,
1438
+ "learning_rate": 2.818249032317981e-05,
1439
+ "loss": 0.2675,
1440
+ "mean_token_accuracy": 0.9228313736617565,
1441
+ "num_tokens": 44770720.0,
1442
+ "step": 1410
1443
+ },
1444
+ {
1445
+ "entropy": 0.2637157242745161,
1446
+ "epoch": 2.305318717011774,
1447
+ "grad_norm": 0.126953125,
1448
+ "learning_rate": 2.6973657862911418e-05,
1449
+ "loss": 0.2574,
1450
+ "mean_token_accuracy": 0.9266756564378739,
1451
+ "num_tokens": 45089446.0,
1452
+ "step": 1420
1453
+ },
1454
+ {
1455
+ "entropy": 0.2700337437912822,
1456
+ "epoch": 2.3215590742996346,
1457
+ "grad_norm": 0.130859375,
1458
+ "learning_rate": 2.578726898399799e-05,
1459
+ "loss": 0.2635,
1460
+ "mean_token_accuracy": 0.9248986080288887,
1461
+ "num_tokens": 45408829.0,
1462
+ "step": 1430
1463
+ },
1464
+ {
1465
+ "entropy": 0.25822389777749777,
1466
+ "epoch": 2.337799431587495,
1467
+ "grad_norm": 0.12255859375,
1468
+ "learning_rate": 2.4623688305761005e-05,
1469
+ "loss": 0.2474,
1470
+ "mean_token_accuracy": 0.9288143701851368,
1471
+ "num_tokens": 45725486.0,
1472
+ "step": 1440
1473
+ },
1474
+ {
1475
+ "entropy": 0.25613431744277476,
1476
+ "epoch": 2.3540397888753555,
1477
+ "grad_norm": 0.1328125,
1478
+ "learning_rate": 2.3483273437754107e-05,
1479
+ "loss": 0.2473,
1480
+ "mean_token_accuracy": 0.9285800620913506,
1481
+ "num_tokens": 46043580.0,
1482
+ "step": 1450
1483
+ },
1484
+ {
1485
+ "entropy": 0.2738852068781853,
1486
+ "epoch": 2.3702801461632155,
1487
+ "grad_norm": 0.1572265625,
1488
+ "learning_rate": 2.2366374869856998e-05,
1489
+ "loss": 0.2696,
1490
+ "mean_token_accuracy": 0.9233844071626663,
1491
+ "num_tokens": 46364834.0,
1492
+ "step": 1460
1493
+ },
1494
+ {
1495
+ "entropy": 0.2616811253130436,
1496
+ "epoch": 2.386520503451076,
1497
+ "grad_norm": 0.140625,
1498
+ "learning_rate": 2.12733358645574e-05,
1499
+ "loss": 0.2551,
1500
+ "mean_token_accuracy": 0.926591832190752,
1501
+ "num_tokens": 46682176.0,
1502
+ "step": 1470
1503
+ },
1504
+ {
1505
+ "entropy": 0.2675771150738001,
1506
+ "epoch": 2.4027608607389364,
1507
+ "grad_norm": 0.1318359375,
1508
+ "learning_rate": 2.0204492351454472e-05,
1509
+ "loss": 0.2583,
1510
+ "mean_token_accuracy": 0.9257503561675549,
1511
+ "num_tokens": 47001783.0,
1512
+ "step": 1480
1513
+ },
1514
+ {
1515
+ "entropy": 0.2594972148537636,
1516
+ "epoch": 2.4190012180267964,
1517
+ "grad_norm": 0.11962890625,
1518
+ "learning_rate": 1.9160172824015586e-05,
1519
+ "loss": 0.2523,
1520
+ "mean_token_accuracy": 0.9283341206610203,
1521
+ "num_tokens": 47318361.0,
1522
+ "step": 1490
1523
+ },
1524
+ {
1525
+ "entropy": 0.25459160562604666,
1526
+ "epoch": 2.435241575314657,
1527
+ "grad_norm": 0.12451171875,
1528
+ "learning_rate": 1.8140698238618846e-05,
1529
+ "loss": 0.2449,
1530
+ "mean_token_accuracy": 0.9285047873854637,
1531
+ "num_tokens": 47636931.0,
1532
+ "step": 1500
1533
+ },
1534
+ {
1535
+ "epoch": 2.435241575314657,
1536
+ "eval_entropy": 0.2933734593102495,
1537
+ "eval_loss": 0.3246920108795166,
1538
+ "eval_mean_token_accuracy": 0.911526195193065,
1539
+ "eval_num_tokens": 47636931.0,
1540
+ "eval_runtime": 176.9613,
1541
+ "eval_samples_per_second": 2.955,
1542
+ "eval_steps_per_second": 1.481,
1543
+ "step": 1500
1544
+ }
1545
+ ],
1546
+ "logging_steps": 10,
1547
+ "max_steps": 1848,
1548
+ "num_input_tokens_seen": 0,
1549
+ "num_train_epochs": 3,
1550
+ "save_steps": 500,
1551
+ "stateful_callbacks": {
1552
+ "TrainerControl": {
1553
+ "args": {
1554
+ "should_epoch_stop": false,
1555
+ "should_evaluate": false,
1556
+ "should_log": false,
1557
+ "should_save": true,
1558
+ "should_training_stop": false
1559
+ },
1560
+ "attributes": {}
1561
+ }
1562
+ },
1563
+ "total_flos": 1.9345262496700908e+18,
1564
+ "train_batch_size": 2,
1565
+ "trial_name": null,
1566
+ "trial_params": null
1567
+ }
checkpoint-1500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdf35871814e6362e8e3bb1e06bd89d86d567b552dd8281db302a8194398bec8
3
+ size 6008
checkpoint-1848/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/deepseek-coder-6.7b-instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:deepseek-ai/deepseek-coder-6.7b-instruct
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.18.0
checkpoint-1848/adapter_config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "deepseek-ai/deepseek-coder-6.7b-instruct",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 128,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.0",
27
+ "qalora_group_size": 16,
28
+ "r": 64,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "q_proj",
33
+ "v_proj",
34
+ "gate_proj",
35
+ "k_proj",
36
+ "up_proj",
37
+ "o_proj",
38
+ "down_proj"
39
+ ],
40
+ "target_parameters": null,
41
+ "task_type": "CAUSAL_LM",
42
+ "trainable_token_indices": null,
43
+ "use_dora": false,
44
+ "use_qalora": false,
45
+ "use_rslora": false
46
+ }
checkpoint-1848/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba35af72a870789b13fdc3fd010ea7673ce4f327c01b60cbd217e033ece27b4f
3
+ size 319876480
checkpoint-1848/chat_template.jinja ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {% if not add_generation_prompt is defined %}
2
+ {% set add_generation_prompt = false %}
3
+ {% endif %}
4
+ {%- set ns = namespace(found=false) -%}
5
+ {%- for message in messages -%}
6
+ {%- if message['role'] == 'system' -%}
7
+ {%- set ns.found = true -%}
8
+ {%- endif -%}
9
+ {%- endfor -%}
10
+ {{bos_token}}{%- if not ns.found -%}
11
+ {{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\n'}}
12
+ {%- endif %}
13
+ {%- for message in messages %}
14
+ {%- if message['role'] == 'system' %}
15
+ {{ message['content'] }}
16
+ {%- else %}
17
+ {%- if message['role'] == 'user' %}
18
+ {{'### Instruction:\n' + message['content'] + '\n'}}
19
+ {%- else %}
20
+ {{'### Response:\n' + message['content'] + '\n<|EOT|>\n'}}
21
+ {%- endif %}
22
+ {%- endif %}
23
+ {%- endfor %}
24
+ {% if add_generation_prompt %}
25
+ {{'### Response:'}}
26
+ {% endif %}
checkpoint-1848/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f96003b1abc4a662369a237ad91b535e9eee11c966b6ffefa8ae591927b2d95e
3
+ size 640009746
checkpoint-1848/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f11045a5467dbe416380d67faeaad3e25a5696827f3e6e308bfefe7ab37f6708
3
+ size 14244
checkpoint-1848/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed14208b288698a76acdfa6858cb5841bfcb6c963403a78eb1663254b7740b0a
3
+ size 1064
checkpoint-1848/special_tokens_map.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|EOT|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|EOT|>"
17
+ }
checkpoint-1848/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1848/tokenizer_config.json ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "32000": {
7
+ "content": "õ",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "32001": {
15
+ "content": "÷",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "32002": {
23
+ "content": "Á",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32003": {
31
+ "content": "ý",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "32004": {
39
+ "content": "À",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "32005": {
47
+ "content": "ÿ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "32006": {
55
+ "content": "ø",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "32007": {
63
+ "content": "ú",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "32008": {
71
+ "content": "þ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "32009": {
79
+ "content": "ü",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "32010": {
87
+ "content": "ù",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "32011": {
95
+ "content": "ö",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "32012": {
103
+ "content": "û",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "32013": {
111
+ "content": "<|begin▁of▁sentence|>",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32014": {
119
+ "content": "<|end▁of▁sentence|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32015": {
127
+ "content": "<|fim▁hole|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "32016": {
135
+ "content": "<|fim▁begin|>",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "32017": {
143
+ "content": "<|fim▁end|>",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "32018": {
151
+ "content": "<pad>",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "32019": {
159
+ "content": "<|User|>",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "32020": {
167
+ "content": "<|Assistant|>",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "32021": {
175
+ "content": "<|EOT|>",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": true
181
+ }
182
+ },
183
+ "bos_token": "<|begin▁of▁sentence|>",
184
+ "clean_up_tokenization_spaces": false,
185
+ "eos_token": "<|EOT|>",
186
+ "extra_special_tokens": {},
187
+ "legacy": true,
188
+ "model_max_length": 16384,
189
+ "pad_token": "<|EOT|>",
190
+ "sp_model_kwargs": {},
191
+ "tokenizer_class": "LlamaTokenizerFast",
192
+ "unk_token": null,
193
+ "use_default_system_prompt": false
194
+ }
checkpoint-1848/trainer_state.json ADDED
@@ -0,0 +1,1907 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0,
6
+ "eval_steps": 500,
7
+ "global_step": 1848,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "entropy": 2.0573711842298508,
14
+ "epoch": 0.016240357287860333,
15
+ "grad_norm": 0.98046875,
16
+ "learning_rate": 3.2142857142857144e-05,
17
+ "loss": 2.3979,
18
+ "mean_token_accuracy": 0.5674526583403349,
19
+ "num_tokens": 319222.0,
20
+ "step": 10
21
+ },
22
+ {
23
+ "entropy": 1.6298254258930682,
24
+ "epoch": 0.032480714575720666,
25
+ "grad_norm": 0.7734375,
26
+ "learning_rate": 6.785714285714286e-05,
27
+ "loss": 1.7067,
28
+ "mean_token_accuracy": 0.6522471688687801,
29
+ "num_tokens": 635410.0,
30
+ "step": 20
31
+ },
32
+ {
33
+ "entropy": 0.8830645218491554,
34
+ "epoch": 0.048721071863580996,
35
+ "grad_norm": 0.28125,
36
+ "learning_rate": 0.00010357142857142859,
37
+ "loss": 0.8894,
38
+ "mean_token_accuracy": 0.791144409775734,
39
+ "num_tokens": 952489.0,
40
+ "step": 30
41
+ },
42
+ {
43
+ "entropy": 0.6340911261737346,
44
+ "epoch": 0.06496142915144133,
45
+ "grad_norm": 0.2236328125,
46
+ "learning_rate": 0.0001392857142857143,
47
+ "loss": 0.6371,
48
+ "mean_token_accuracy": 0.840929938852787,
49
+ "num_tokens": 1271722.0,
50
+ "step": 40
51
+ },
52
+ {
53
+ "entropy": 0.5732324108481407,
54
+ "epoch": 0.08120178643930166,
55
+ "grad_norm": 0.33203125,
56
+ "learning_rate": 0.000175,
57
+ "loss": 0.5747,
58
+ "mean_token_accuracy": 0.8537561506032944,
59
+ "num_tokens": 1590635.0,
60
+ "step": 50
61
+ },
62
+ {
63
+ "entropy": 0.5194318823516368,
64
+ "epoch": 0.09744214372716199,
65
+ "grad_norm": 0.115234375,
66
+ "learning_rate": 0.0001999986169583868,
67
+ "loss": 0.5268,
68
+ "mean_token_accuracy": 0.8640895910561085,
69
+ "num_tokens": 1908010.0,
70
+ "step": 60
71
+ },
72
+ {
73
+ "entropy": 0.49497435204684737,
74
+ "epoch": 0.11368250101502234,
75
+ "grad_norm": 0.125,
76
+ "learning_rate": 0.00019997403061615897,
77
+ "loss": 0.4986,
78
+ "mean_token_accuracy": 0.8717949956655502,
79
+ "num_tokens": 2225569.0,
80
+ "step": 70
81
+ },
82
+ {
83
+ "entropy": 0.4971678379923105,
84
+ "epoch": 0.12992285830288267,
85
+ "grad_norm": 0.11083984375,
86
+ "learning_rate": 0.0001999187187134847,
87
+ "loss": 0.4924,
88
+ "mean_token_accuracy": 0.8731547556817532,
89
+ "num_tokens": 2539488.0,
90
+ "step": 80
91
+ },
92
+ {
93
+ "entropy": 0.5084386952221394,
94
+ "epoch": 0.146163215590743,
95
+ "grad_norm": 0.1083984375,
96
+ "learning_rate": 0.00019983269824967067,
97
+ "loss": 0.5163,
98
+ "mean_token_accuracy": 0.8671703346073627,
99
+ "num_tokens": 2857760.0,
100
+ "step": 90
101
+ },
102
+ {
103
+ "entropy": 0.476475191116333,
104
+ "epoch": 0.16240357287860333,
105
+ "grad_norm": 0.11279296875,
106
+ "learning_rate": 0.00019971599566185206,
107
+ "loss": 0.4758,
108
+ "mean_token_accuracy": 0.876344844698906,
109
+ "num_tokens": 3174136.0,
110
+ "step": 100
111
+ },
112
+ {
113
+ "entropy": 0.48804047554731367,
114
+ "epoch": 0.17864393016646365,
115
+ "grad_norm": 0.1025390625,
116
+ "learning_rate": 0.00019956864681686744,
117
+ "loss": 0.4837,
118
+ "mean_token_accuracy": 0.8742976881563663,
119
+ "num_tokens": 3489505.0,
120
+ "step": 110
121
+ },
122
+ {
123
+ "entropy": 0.4607066061347723,
124
+ "epoch": 0.19488428745432398,
125
+ "grad_norm": 0.255859375,
126
+ "learning_rate": 0.00019939069700023563,
127
+ "loss": 0.4639,
128
+ "mean_token_accuracy": 0.879499676078558,
129
+ "num_tokens": 3807935.0,
130
+ "step": 120
131
+ },
132
+ {
133
+ "entropy": 0.4422083988785744,
134
+ "epoch": 0.21112464474218431,
135
+ "grad_norm": 0.099609375,
136
+ "learning_rate": 0.00019918220090223775,
137
+ "loss": 0.4431,
138
+ "mean_token_accuracy": 0.8831395357847214,
139
+ "num_tokens": 4125137.0,
140
+ "step": 130
141
+ },
142
+ {
143
+ "entropy": 0.44356597438454626,
144
+ "epoch": 0.22736500203004467,
145
+ "grad_norm": 0.10595703125,
146
+ "learning_rate": 0.00019894322260110927,
147
+ "loss": 0.4373,
148
+ "mean_token_accuracy": 0.8849747203290462,
149
+ "num_tokens": 4442538.0,
150
+ "step": 140
151
+ },
152
+ {
153
+ "entropy": 0.44916940554976464,
154
+ "epoch": 0.243605359317905,
155
+ "grad_norm": 0.11083984375,
156
+ "learning_rate": 0.00019867383554334603,
157
+ "loss": 0.4473,
158
+ "mean_token_accuracy": 0.8828106552362442,
159
+ "num_tokens": 4761703.0,
160
+ "step": 150
161
+ },
162
+ {
163
+ "entropy": 0.44491727463901043,
164
+ "epoch": 0.25984571660576533,
165
+ "grad_norm": 0.09716796875,
166
+ "learning_rate": 0.00019837412252113204,
167
+ "loss": 0.446,
168
+ "mean_token_accuracy": 0.8818246781826019,
169
+ "num_tokens": 5080459.0,
170
+ "step": 160
171
+ },
172
+ {
173
+ "entropy": 0.4443864993751049,
174
+ "epoch": 0.27608607389362566,
175
+ "grad_norm": 0.11474609375,
176
+ "learning_rate": 0.00019804417564689403,
177
+ "loss": 0.4424,
178
+ "mean_token_accuracy": 0.8833745121955872,
179
+ "num_tokens": 5394935.0,
180
+ "step": 170
181
+ },
182
+ {
183
+ "entropy": 0.43182576820254326,
184
+ "epoch": 0.292326431181486,
185
+ "grad_norm": 0.10302734375,
186
+ "learning_rate": 0.00019768409632499244,
187
+ "loss": 0.4337,
188
+ "mean_token_accuracy": 0.8853104099631309,
189
+ "num_tokens": 5711130.0,
190
+ "step": 180
191
+ },
192
+ {
193
+ "entropy": 0.4353721059858799,
194
+ "epoch": 0.3085667884693463,
195
+ "grad_norm": 0.10205078125,
196
+ "learning_rate": 0.00019729399522055603,
197
+ "loss": 0.4351,
198
+ "mean_token_accuracy": 0.8850096859037876,
199
+ "num_tokens": 6028009.0,
200
+ "step": 190
201
+ },
202
+ {
203
+ "entropy": 0.4161925382912159,
204
+ "epoch": 0.32480714575720665,
205
+ "grad_norm": 0.10107421875,
206
+ "learning_rate": 0.0001968739922254706,
207
+ "loss": 0.4118,
208
+ "mean_token_accuracy": 0.8901829145848751,
209
+ "num_tokens": 6345284.0,
210
+ "step": 200
211
+ },
212
+ {
213
+ "entropy": 0.4270293299108744,
214
+ "epoch": 0.341047503045067,
215
+ "grad_norm": 0.126953125,
216
+ "learning_rate": 0.00019642421642153198,
217
+ "loss": 0.4266,
218
+ "mean_token_accuracy": 0.885687505453825,
219
+ "num_tokens": 6664555.0,
220
+ "step": 210
221
+ },
222
+ {
223
+ "entropy": 0.4177013225853443,
224
+ "epoch": 0.3572878603329273,
225
+ "grad_norm": 0.09912109375,
226
+ "learning_rate": 0.0001959448060407748,
227
+ "loss": 0.4185,
228
+ "mean_token_accuracy": 0.8890490755438805,
229
+ "num_tokens": 6984869.0,
230
+ "step": 220
231
+ },
232
+ {
233
+ "entropy": 0.4492575516924262,
234
+ "epoch": 0.37352821762078764,
235
+ "grad_norm": 0.125,
236
+ "learning_rate": 0.00019543590842298857,
237
+ "loss": 0.4471,
238
+ "mean_token_accuracy": 0.8821755766868591,
239
+ "num_tokens": 7301522.0,
240
+ "step": 230
241
+ },
242
+ {
243
+ "entropy": 0.4262876145541668,
244
+ "epoch": 0.38976857490864797,
245
+ "grad_norm": 0.126953125,
246
+ "learning_rate": 0.0001948976799704351,
247
+ "loss": 0.4272,
248
+ "mean_token_accuracy": 0.8858069330453873,
249
+ "num_tokens": 7617411.0,
250
+ "step": 240
251
+ },
252
+ {
253
+ "entropy": 0.4227599944919348,
254
+ "epoch": 0.4060089321965083,
255
+ "grad_norm": 0.111328125,
256
+ "learning_rate": 0.0001943302860997807,
257
+ "loss": 0.4183,
258
+ "mean_token_accuracy": 0.889183484762907,
259
+ "num_tokens": 7932287.0,
260
+ "step": 250
261
+ },
262
+ {
263
+ "entropy": 0.4225012965500355,
264
+ "epoch": 0.42224928948436863,
265
+ "grad_norm": 0.173828125,
266
+ "learning_rate": 0.00019373390119125752,
267
+ "loss": 0.4241,
268
+ "mean_token_accuracy": 0.8874775715172291,
269
+ "num_tokens": 8249106.0,
270
+ "step": 260
271
+ },
272
+ {
273
+ "entropy": 0.4166328992694616,
274
+ "epoch": 0.438489646772229,
275
+ "grad_norm": 0.109375,
276
+ "learning_rate": 0.00019310870853507043,
277
+ "loss": 0.4183,
278
+ "mean_token_accuracy": 0.8885860778391361,
279
+ "num_tokens": 8564544.0,
280
+ "step": 270
281
+ },
282
+ {
283
+ "entropy": 0.38806356210261583,
284
+ "epoch": 0.45473000406008934,
285
+ "grad_norm": 0.11328125,
286
+ "learning_rate": 0.00019245490027506546,
287
+ "loss": 0.3836,
288
+ "mean_token_accuracy": 0.8962622597813606,
289
+ "num_tokens": 8883546.0,
290
+ "step": 280
291
+ },
292
+ {
293
+ "entropy": 0.388262290135026,
294
+ "epoch": 0.4709703613479497,
295
+ "grad_norm": 0.09130859375,
296
+ "learning_rate": 0.0001917726773496773,
297
+ "loss": 0.3847,
298
+ "mean_token_accuracy": 0.8955962382256984,
299
+ "num_tokens": 9199902.0,
300
+ "step": 290
301
+ },
302
+ {
303
+ "entropy": 0.40017246957868335,
304
+ "epoch": 0.48721071863581,
305
+ "grad_norm": 0.09716796875,
306
+ "learning_rate": 0.00019106224943017352,
307
+ "loss": 0.3984,
308
+ "mean_token_accuracy": 0.8926815405488014,
309
+ "num_tokens": 9518427.0,
310
+ "step": 300
311
+ },
312
+ {
313
+ "entropy": 0.39343364126980307,
314
+ "epoch": 0.5034510759236703,
315
+ "grad_norm": 0.09521484375,
316
+ "learning_rate": 0.00019032383485621546,
317
+ "loss": 0.3936,
318
+ "mean_token_accuracy": 0.8935227513313293,
319
+ "num_tokens": 9834801.0,
320
+ "step": 310
321
+ },
322
+ {
323
+ "entropy": 0.40088152755051853,
324
+ "epoch": 0.5196914332115307,
325
+ "grad_norm": 0.09423828125,
326
+ "learning_rate": 0.00018955766056875456,
327
+ "loss": 0.4013,
328
+ "mean_token_accuracy": 0.8928539358079434,
329
+ "num_tokens": 10150756.0,
330
+ "step": 320
331
+ },
332
+ {
333
+ "entropy": 0.3935076169669628,
334
+ "epoch": 0.535931790499391,
335
+ "grad_norm": 0.09619140625,
336
+ "learning_rate": 0.0001887639620402854,
337
+ "loss": 0.3894,
338
+ "mean_token_accuracy": 0.8937225684523582,
339
+ "num_tokens": 10470119.0,
340
+ "step": 330
341
+ },
342
+ {
343
+ "entropy": 0.4141834359616041,
344
+ "epoch": 0.5521721477872513,
345
+ "grad_norm": 0.099609375,
346
+ "learning_rate": 0.00018794298320247665,
347
+ "loss": 0.415,
348
+ "mean_token_accuracy": 0.8895114719867706,
349
+ "num_tokens": 10787249.0,
350
+ "step": 340
351
+ },
352
+ {
353
+ "entropy": 0.41944080144166945,
354
+ "epoch": 0.5684125050751117,
355
+ "grad_norm": 0.1162109375,
356
+ "learning_rate": 0.0001870949763712022,
357
+ "loss": 0.4151,
358
+ "mean_token_accuracy": 0.8887378059327602,
359
+ "num_tokens": 11107800.0,
360
+ "step": 350
361
+ },
362
+ {
363
+ "entropy": 0.4085154063999653,
364
+ "epoch": 0.584652862362972,
365
+ "grad_norm": 0.123046875,
366
+ "learning_rate": 0.00018622020216899575,
367
+ "loss": 0.4067,
368
+ "mean_token_accuracy": 0.8906957127153874,
369
+ "num_tokens": 11424520.0,
370
+ "step": 360
371
+ },
372
+ {
373
+ "entropy": 0.41457892414182423,
374
+ "epoch": 0.6008932196508323,
375
+ "grad_norm": 0.1005859375,
376
+ "learning_rate": 0.00018531892944495195,
377
+ "loss": 0.4139,
378
+ "mean_token_accuracy": 0.8893011771142483,
379
+ "num_tokens": 11743854.0,
380
+ "step": 370
381
+ },
382
+ {
383
+ "entropy": 0.3982046090066433,
384
+ "epoch": 0.6171335769386926,
385
+ "grad_norm": 0.095703125,
386
+ "learning_rate": 0.00018439143519209984,
387
+ "loss": 0.3972,
388
+ "mean_token_accuracy": 0.8931242369115353,
389
+ "num_tokens": 12060493.0,
390
+ "step": 380
391
+ },
392
+ {
393
+ "entropy": 0.37617460917681456,
394
+ "epoch": 0.633373934226553,
395
+ "grad_norm": 0.17578125,
396
+ "learning_rate": 0.00018343800446227285,
397
+ "loss": 0.3737,
398
+ "mean_token_accuracy": 0.8988998346030712,
399
+ "num_tokens": 12377614.0,
400
+ "step": 390
401
+ },
402
+ {
403
+ "entropy": 0.38792264480143784,
404
+ "epoch": 0.6496142915144133,
405
+ "grad_norm": 0.1025390625,
406
+ "learning_rate": 0.00018245893027850254,
407
+ "loss": 0.3863,
408
+ "mean_token_accuracy": 0.8964896731078624,
409
+ "num_tokens": 12695713.0,
410
+ "step": 400
411
+ },
412
+ {
413
+ "entropy": 0.3779356569051743,
414
+ "epoch": 0.6658546488022736,
415
+ "grad_norm": 0.09912109375,
416
+ "learning_rate": 0.00018145451354496198,
417
+ "loss": 0.377,
418
+ "mean_token_accuracy": 0.8985928252339364,
419
+ "num_tokens": 13011198.0,
420
+ "step": 410
421
+ },
422
+ {
423
+ "entropy": 0.40948784444481134,
424
+ "epoch": 0.682095006090134,
425
+ "grad_norm": 0.1162109375,
426
+ "learning_rate": 0.0001804250629544874,
427
+ "loss": 0.4077,
428
+ "mean_token_accuracy": 0.8911456301808357,
429
+ "num_tokens": 13329544.0,
430
+ "step": 420
431
+ },
432
+ {
433
+ "entropy": 0.38341086860746143,
434
+ "epoch": 0.6983353633779943,
435
+ "grad_norm": 0.10888671875,
436
+ "learning_rate": 0.00017937089489370594,
437
+ "loss": 0.3829,
438
+ "mean_token_accuracy": 0.8969453655183315,
439
+ "num_tokens": 13645469.0,
440
+ "step": 430
441
+ },
442
+ {
443
+ "entropy": 0.3890859391540289,
444
+ "epoch": 0.7145757206658546,
445
+ "grad_norm": 0.10400390625,
446
+ "learning_rate": 0.0001782923333457987,
447
+ "loss": 0.3875,
448
+ "mean_token_accuracy": 0.8961056731641293,
449
+ "num_tokens": 13964383.0,
450
+ "step": 440
451
+ },
452
+ {
453
+ "entropy": 0.3823310313746333,
454
+ "epoch": 0.730816077953715,
455
+ "grad_norm": 0.09375,
456
+ "learning_rate": 0.0001771897097909294,
457
+ "loss": 0.3857,
458
+ "mean_token_accuracy": 0.8955351069569588,
459
+ "num_tokens": 14284139.0,
460
+ "step": 450
461
+ },
462
+ {
463
+ "entropy": 0.372044226154685,
464
+ "epoch": 0.7470564352415753,
465
+ "grad_norm": 0.1044921875,
466
+ "learning_rate": 0.00017606336310436874,
467
+ "loss": 0.3703,
468
+ "mean_token_accuracy": 0.8989921748638153,
469
+ "num_tokens": 14601084.0,
470
+ "step": 460
471
+ },
472
+ {
473
+ "entropy": 0.3764212913811207,
474
+ "epoch": 0.7632967925294356,
475
+ "grad_norm": 0.10546875,
476
+ "learning_rate": 0.00017491363945234593,
477
+ "loss": 0.3708,
478
+ "mean_token_accuracy": 0.8989950515329838,
479
+ "num_tokens": 14919347.0,
480
+ "step": 470
481
+ },
482
+ {
483
+ "entropy": 0.3796376219019294,
484
+ "epoch": 0.7795371498172959,
485
+ "grad_norm": 0.0986328125,
486
+ "learning_rate": 0.00017374089218565972,
487
+ "loss": 0.3777,
488
+ "mean_token_accuracy": 0.8979221723973752,
489
+ "num_tokens": 15235024.0,
490
+ "step": 480
491
+ },
492
+ {
493
+ "entropy": 0.3780976843088865,
494
+ "epoch": 0.7957775071051563,
495
+ "grad_norm": 0.09326171875,
496
+ "learning_rate": 0.000172545481731081,
497
+ "loss": 0.3814,
498
+ "mean_token_accuracy": 0.8970133177936077,
499
+ "num_tokens": 15555890.0,
500
+ "step": 490
501
+ },
502
+ {
503
+ "entropy": 0.36868189480155705,
504
+ "epoch": 0.8120178643930166,
505
+ "grad_norm": 0.1318359375,
506
+ "learning_rate": 0.00017132777548058102,
507
+ "loss": 0.367,
508
+ "mean_token_accuracy": 0.8997100129723549,
509
+ "num_tokens": 15871127.0,
510
+ "step": 500
511
+ },
512
+ {
513
+ "epoch": 0.8120178643930166,
514
+ "eval_entropy": 0.3875140378834637,
515
+ "eval_loss": 0.38122546672821045,
516
+ "eval_mean_token_accuracy": 0.8967177114868892,
517
+ "eval_num_tokens": 15871127.0,
518
+ "eval_runtime": 177.0916,
519
+ "eval_samples_per_second": 2.953,
520
+ "eval_steps_per_second": 1.479,
521
+ "step": 500
522
+ },
523
+ {
524
+ "entropy": 0.36098182667046785,
525
+ "epoch": 0.8282582216808769,
526
+ "grad_norm": 0.091796875,
527
+ "learning_rate": 0.00017008814767841872,
528
+ "loss": 0.358,
529
+ "mean_token_accuracy": 0.9020477868616581,
530
+ "num_tokens": 16186646.0,
531
+ "step": 510
532
+ },
533
+ {
534
+ "entropy": 0.37107769679278135,
535
+ "epoch": 0.8444985789687373,
536
+ "grad_norm": 0.0966796875,
537
+ "learning_rate": 0.00016882697930612237,
538
+ "loss": 0.3667,
539
+ "mean_token_accuracy": 0.8997148185968399,
540
+ "num_tokens": 16505442.0,
541
+ "step": 520
542
+ },
543
+ {
544
+ "entropy": 0.36859209295362233,
545
+ "epoch": 0.8607389362565977,
546
+ "grad_norm": 0.09228515625,
547
+ "learning_rate": 0.00016754465796540028,
548
+ "loss": 0.3656,
549
+ "mean_token_accuracy": 0.9001396887004376,
550
+ "num_tokens": 16824612.0,
551
+ "step": 530
552
+ },
553
+ {
554
+ "entropy": 0.36337947361171247,
555
+ "epoch": 0.876979293544458,
556
+ "grad_norm": 0.095703125,
557
+ "learning_rate": 0.0001662415777590172,
558
+ "loss": 0.3653,
559
+ "mean_token_accuracy": 0.9004977688193321,
560
+ "num_tokens": 17147012.0,
561
+ "step": 540
562
+ },
563
+ {
564
+ "entropy": 0.38551054075360297,
565
+ "epoch": 0.8932196508323184,
566
+ "grad_norm": 0.10302734375,
567
+ "learning_rate": 0.00016491813916967246,
568
+ "loss": 0.3841,
569
+ "mean_token_accuracy": 0.8968335554003716,
570
+ "num_tokens": 17463603.0,
571
+ "step": 550
572
+ },
573
+ {
574
+ "entropy": 0.3718857761472464,
575
+ "epoch": 0.9094600081201787,
576
+ "grad_norm": 0.1025390625,
577
+ "learning_rate": 0.00016357474893691757,
578
+ "loss": 0.3694,
579
+ "mean_token_accuracy": 0.8994779132306576,
580
+ "num_tokens": 17780634.0,
581
+ "step": 560
582
+ },
583
+ {
584
+ "entropy": 0.3478269662708044,
585
+ "epoch": 0.925700365408039,
586
+ "grad_norm": 0.1005859375,
587
+ "learning_rate": 0.00016221181993215068,
588
+ "loss": 0.3495,
589
+ "mean_token_accuracy": 0.9044472806155681,
590
+ "num_tokens": 18099787.0,
591
+ "step": 570
592
+ },
593
+ {
594
+ "entropy": 0.3706334102898836,
595
+ "epoch": 0.9419407226958993,
596
+ "grad_norm": 0.10107421875,
597
+ "learning_rate": 0.00016082977103172664,
598
+ "loss": 0.3643,
599
+ "mean_token_accuracy": 0.9007264509797096,
600
+ "num_tokens": 18417572.0,
601
+ "step": 580
602
+ },
603
+ {
604
+ "entropy": 0.33980775382369754,
605
+ "epoch": 0.9581810799837597,
606
+ "grad_norm": 0.099609375,
607
+ "learning_rate": 0.00015942902698822136,
608
+ "loss": 0.339,
609
+ "mean_token_accuracy": 0.9067365050315856,
610
+ "num_tokens": 18734911.0,
611
+ "step": 590
612
+ },
613
+ {
614
+ "entropy": 0.36088257618248465,
615
+ "epoch": 0.97442143727162,
616
+ "grad_norm": 0.10693359375,
617
+ "learning_rate": 0.00015801001829989032,
618
+ "loss": 0.3576,
619
+ "mean_token_accuracy": 0.9025222927331924,
620
+ "num_tokens": 19054345.0,
621
+ "step": 600
622
+ },
623
+ {
624
+ "entropy": 0.35844882633537056,
625
+ "epoch": 0.9906617945594803,
626
+ "grad_norm": 0.10400390625,
627
+ "learning_rate": 0.0001565731810783613,
628
+ "loss": 0.3553,
629
+ "mean_token_accuracy": 0.9028041236102581,
630
+ "num_tokens": 19371809.0,
631
+ "step": 610
632
+ },
633
+ {
634
+ "entropy": 0.3564173472233308,
635
+ "epoch": 1.0064961429151442,
636
+ "grad_norm": 0.11181640625,
637
+ "learning_rate": 0.00015511895691460188,
638
+ "loss": 0.353,
639
+ "mean_token_accuracy": 0.9035867773569547,
640
+ "num_tokens": 19684212.0,
641
+ "step": 620
642
+ },
643
+ {
644
+ "entropy": 0.3372783612459898,
645
+ "epoch": 1.0227365002030044,
646
+ "grad_norm": 0.1064453125,
647
+ "learning_rate": 0.00015364779274320255,
648
+ "loss": 0.3362,
649
+ "mean_token_accuracy": 0.9072924487292766,
650
+ "num_tokens": 20003357.0,
651
+ "step": 630
652
+ },
653
+ {
654
+ "entropy": 0.3311926079913974,
655
+ "epoch": 1.0389768574908649,
656
+ "grad_norm": 0.09912109375,
657
+ "learning_rate": 0.00015216014070501834,
658
+ "loss": 0.3244,
659
+ "mean_token_accuracy": 0.9089326687157154,
660
+ "num_tokens": 20322614.0,
661
+ "step": 640
662
+ },
663
+ {
664
+ "entropy": 0.33821379821747544,
665
+ "epoch": 1.055217214778725,
666
+ "grad_norm": 0.09912109375,
667
+ "learning_rate": 0.0001506564580082096,
668
+ "loss": 0.3388,
669
+ "mean_token_accuracy": 0.9062777034938335,
670
+ "num_tokens": 20635631.0,
671
+ "step": 650
672
+ },
673
+ {
674
+ "entropy": 0.3465416576713324,
675
+ "epoch": 1.0714575720665855,
676
+ "grad_norm": 0.1083984375,
677
+ "learning_rate": 0.00014913720678772584,
678
+ "loss": 0.3455,
679
+ "mean_token_accuracy": 0.9043642178177833,
680
+ "num_tokens": 20955241.0,
681
+ "step": 660
682
+ },
683
+ {
684
+ "entropy": 0.33202757611870765,
685
+ "epoch": 1.0876979293544458,
686
+ "grad_norm": 0.10595703125,
687
+ "learning_rate": 0.00014760285396327532,
688
+ "loss": 0.3277,
689
+ "mean_token_accuracy": 0.9081737406551837,
690
+ "num_tokens": 21269871.0,
691
+ "step": 670
692
+ },
693
+ {
694
+ "entropy": 0.30594254843890667,
695
+ "epoch": 1.1039382866423062,
696
+ "grad_norm": 0.140625,
697
+ "learning_rate": 0.000146053871095824,
698
+ "loss": 0.3029,
699
+ "mean_token_accuracy": 0.9145903818309307,
700
+ "num_tokens": 21586356.0,
701
+ "step": 680
702
+ },
703
+ {
704
+ "entropy": 0.31971859056502583,
705
+ "epoch": 1.1201786439301664,
706
+ "grad_norm": 0.107421875,
707
+ "learning_rate": 0.00014449073424266837,
708
+ "loss": 0.3133,
709
+ "mean_token_accuracy": 0.9111780665814877,
710
+ "num_tokens": 21905514.0,
711
+ "step": 690
712
+ },
713
+ {
714
+ "entropy": 0.32340758945792913,
715
+ "epoch": 1.1364190012180269,
716
+ "grad_norm": 0.1005859375,
717
+ "learning_rate": 0.0001429139238111259,
718
+ "loss": 0.3199,
719
+ "mean_token_accuracy": 0.910588438808918,
720
+ "num_tokens": 22224116.0,
721
+ "step": 700
722
+ },
723
+ {
724
+ "entropy": 0.30627013817429544,
725
+ "epoch": 1.152659358505887,
726
+ "grad_norm": 0.11474609375,
727
+ "learning_rate": 0.00014132392441088898,
728
+ "loss": 0.3062,
729
+ "mean_token_accuracy": 0.9141925357282161,
730
+ "num_tokens": 22541518.0,
731
+ "step": 710
732
+ },
733
+ {
734
+ "entropy": 0.34387709144502876,
735
+ "epoch": 1.1688997157937475,
736
+ "grad_norm": 0.10986328125,
737
+ "learning_rate": 0.00013972122470508726,
738
+ "loss": 0.3388,
739
+ "mean_token_accuracy": 0.9059014208614826,
740
+ "num_tokens": 22857809.0,
741
+ "step": 720
742
+ },
743
+ {
744
+ "entropy": 0.3105178466066718,
745
+ "epoch": 1.1851400730816077,
746
+ "grad_norm": 0.103515625,
747
+ "learning_rate": 0.00013810631726010405,
748
+ "loss": 0.3113,
749
+ "mean_token_accuracy": 0.912415674328804,
750
+ "num_tokens": 23175061.0,
751
+ "step": 730
752
+ },
753
+ {
754
+ "entropy": 0.32021520137786863,
755
+ "epoch": 1.2013804303694682,
756
+ "grad_norm": 0.10205078125,
757
+ "learning_rate": 0.00013647969839419334,
758
+ "loss": 0.3166,
759
+ "mean_token_accuracy": 0.9124397613108158,
760
+ "num_tokens": 23492422.0,
761
+ "step": 740
762
+ },
763
+ {
764
+ "entropy": 0.33215807750821114,
765
+ "epoch": 1.2176207876573284,
766
+ "grad_norm": 0.10693359375,
767
+ "learning_rate": 0.00013484186802494345,
768
+ "loss": 0.3288,
769
+ "mean_token_accuracy": 0.9079324699938297,
770
+ "num_tokens": 23811312.0,
771
+ "step": 750
772
+ },
773
+ {
774
+ "entropy": 0.3269189100712538,
775
+ "epoch": 1.2338611449451888,
776
+ "grad_norm": 0.12353515625,
777
+ "learning_rate": 0.00013319332951563495,
778
+ "loss": 0.3229,
779
+ "mean_token_accuracy": 0.9100485563278198,
780
+ "num_tokens": 24127363.0,
781
+ "step": 760
782
+ },
783
+ {
784
+ "entropy": 0.32415517419576645,
785
+ "epoch": 1.250101502233049,
786
+ "grad_norm": 0.10498046875,
787
+ "learning_rate": 0.0001315345895205389,
788
+ "loss": 0.3218,
789
+ "mean_token_accuracy": 0.9100560195744037,
790
+ "num_tokens": 24443515.0,
791
+ "step": 770
792
+ },
793
+ {
794
+ "entropy": 0.3075957763940096,
795
+ "epoch": 1.2663418595209095,
796
+ "grad_norm": 0.107421875,
797
+ "learning_rate": 0.0001298661578292044,
798
+ "loss": 0.3085,
799
+ "mean_token_accuracy": 0.9134799301624298,
800
+ "num_tokens": 24759656.0,
801
+ "step": 780
802
+ },
803
+ {
804
+ "entropy": 0.33256804049015043,
805
+ "epoch": 1.2825822168087697,
806
+ "grad_norm": 0.11572265625,
807
+ "learning_rate": 0.00012818854720978196,
808
+ "loss": 0.3283,
809
+ "mean_token_accuracy": 0.9092446401715278,
810
+ "num_tokens": 25076124.0,
811
+ "step": 790
812
+ },
813
+ {
814
+ "entropy": 0.3044602788053453,
815
+ "epoch": 1.2988225740966302,
816
+ "grad_norm": 0.109375,
817
+ "learning_rate": 0.00012650227325143191,
818
+ "loss": 0.2998,
819
+ "mean_token_accuracy": 0.9158783234655857,
820
+ "num_tokens": 25394550.0,
821
+ "step": 800
822
+ },
823
+ {
824
+ "entropy": 0.3089112024754286,
825
+ "epoch": 1.3150629313844906,
826
+ "grad_norm": 0.1181640625,
827
+ "learning_rate": 0.0001248078542058653,
828
+ "loss": 0.3065,
829
+ "mean_token_accuracy": 0.9139430224895477,
830
+ "num_tokens": 25713937.0,
831
+ "step": 810
832
+ },
833
+ {
834
+ "entropy": 0.3199151481501758,
835
+ "epoch": 1.3313032886723508,
836
+ "grad_norm": 0.1064453125,
837
+ "learning_rate": 0.00012310581082806713,
838
+ "loss": 0.3153,
839
+ "mean_token_accuracy": 0.9130744747817516,
840
+ "num_tokens": 26033627.0,
841
+ "step": 820
842
+ },
843
+ {
844
+ "entropy": 0.3134147599339485,
845
+ "epoch": 1.347543645960211,
846
+ "grad_norm": 0.10888671875,
847
+ "learning_rate": 0.0001213966662162496,
848
+ "loss": 0.3158,
849
+ "mean_token_accuracy": 0.9115599945187569,
850
+ "num_tokens": 26351334.0,
851
+ "step": 830
852
+ },
853
+ {
854
+ "entropy": 0.30595332104712725,
855
+ "epoch": 1.3637840032480715,
856
+ "grad_norm": 0.11376953125,
857
+ "learning_rate": 0.00011968094565108572,
858
+ "loss": 0.2998,
859
+ "mean_token_accuracy": 0.9158065438270568,
860
+ "num_tokens": 26670167.0,
861
+ "step": 840
862
+ },
863
+ {
864
+ "entropy": 0.3209634754806757,
865
+ "epoch": 1.380024360535932,
866
+ "grad_norm": 0.10693359375,
867
+ "learning_rate": 0.00011795917643427179,
868
+ "loss": 0.3185,
869
+ "mean_token_accuracy": 0.9116993598639965,
870
+ "num_tokens": 26987963.0,
871
+ "step": 850
872
+ },
873
+ {
874
+ "entropy": 0.31424548048526046,
875
+ "epoch": 1.3962647178237921,
876
+ "grad_norm": 0.1171875,
877
+ "learning_rate": 0.0001162318877264691,
878
+ "loss": 0.3089,
879
+ "mean_token_accuracy": 0.9129889853298664,
880
+ "num_tokens": 27308192.0,
881
+ "step": 860
882
+ },
883
+ {
884
+ "entropy": 0.33518767151981593,
885
+ "epoch": 1.4125050751116524,
886
+ "grad_norm": 0.11572265625,
887
+ "learning_rate": 0.00011449961038467389,
888
+ "loss": 0.3334,
889
+ "mean_token_accuracy": 0.907250489294529,
890
+ "num_tokens": 27627277.0,
891
+ "step": 870
892
+ },
893
+ {
894
+ "entropy": 0.32196133993566034,
895
+ "epoch": 1.4287454323995128,
896
+ "grad_norm": 0.11083984375,
897
+ "learning_rate": 0.00011276287679906639,
898
+ "loss": 0.3235,
899
+ "mean_token_accuracy": 0.9093112558126449,
900
+ "num_tokens": 27943368.0,
901
+ "step": 880
902
+ },
903
+ {
904
+ "entropy": 0.3061803586781025,
905
+ "epoch": 1.4449857896873732,
906
+ "grad_norm": 0.115234375,
907
+ "learning_rate": 0.00011102222072938832,
908
+ "loss": 0.3011,
909
+ "mean_token_accuracy": 0.915228334069252,
910
+ "num_tokens": 28259836.0,
911
+ "step": 890
912
+ },
913
+ {
914
+ "entropy": 0.3232524123042822,
915
+ "epoch": 1.4612261469752335,
916
+ "grad_norm": 0.111328125,
917
+ "learning_rate": 0.00010927817714089973,
918
+ "loss": 0.3191,
919
+ "mean_token_accuracy": 0.9117089517414569,
920
+ "num_tokens": 28580230.0,
921
+ "step": 900
922
+ },
923
+ {
924
+ "entropy": 0.33082296065986155,
925
+ "epoch": 1.4774665042630937,
926
+ "grad_norm": 0.11962890625,
927
+ "learning_rate": 0.00010753128203996519,
928
+ "loss": 0.3269,
929
+ "mean_token_accuracy": 0.9086541675031186,
930
+ "num_tokens": 28898617.0,
931
+ "step": 910
932
+ },
933
+ {
934
+ "entropy": 0.3250410893931985,
935
+ "epoch": 1.4937068615509541,
936
+ "grad_norm": 0.150390625,
937
+ "learning_rate": 0.00010578207230932,
938
+ "loss": 0.319,
939
+ "mean_token_accuracy": 0.9112100295722485,
940
+ "num_tokens": 29215055.0,
941
+ "step": 920
942
+ },
943
+ {
944
+ "entropy": 0.3142668510787189,
945
+ "epoch": 1.5099472188388146,
946
+ "grad_norm": 0.1123046875,
947
+ "learning_rate": 0.00010403108554306717,
948
+ "loss": 0.3122,
949
+ "mean_token_accuracy": 0.9117408633232117,
950
+ "num_tokens": 29529393.0,
951
+ "step": 930
952
+ },
953
+ {
954
+ "entropy": 0.3135885909199715,
955
+ "epoch": 1.5261875761266748,
956
+ "grad_norm": 0.11572265625,
957
+ "learning_rate": 0.00010227885988145563,
958
+ "loss": 0.3075,
959
+ "mean_token_accuracy": 0.9139442838728428,
960
+ "num_tokens": 29851116.0,
961
+ "step": 940
962
+ },
963
+ {
964
+ "entropy": 0.3046269157901406,
965
+ "epoch": 1.542427933414535,
966
+ "grad_norm": 0.10693359375,
967
+ "learning_rate": 0.00010052593384549082,
968
+ "loss": 0.3034,
969
+ "mean_token_accuracy": 0.9146199978888034,
970
+ "num_tokens": 30169222.0,
971
+ "step": 950
972
+ },
973
+ {
974
+ "entropy": 0.31176882088184354,
975
+ "epoch": 1.5586682907023954,
976
+ "grad_norm": 0.11767578125,
977
+ "learning_rate": 9.877284617142802e-05,
978
+ "loss": 0.3083,
979
+ "mean_token_accuracy": 0.9138757094740868,
980
+ "num_tokens": 30484117.0,
981
+ "step": 960
982
+ },
983
+ {
984
+ "entropy": 0.31525961998850105,
985
+ "epoch": 1.5749086479902559,
986
+ "grad_norm": 0.11328125,
987
+ "learning_rate": 9.702013564519954e-05,
988
+ "loss": 0.311,
989
+ "mean_token_accuracy": 0.9124061703681946,
990
+ "num_tokens": 30804341.0,
991
+ "step": 970
992
+ },
993
+ {
994
+ "entropy": 0.3192242424935102,
995
+ "epoch": 1.591149005278116,
996
+ "grad_norm": 0.1123046875,
997
+ "learning_rate": 9.526834093682685e-05,
998
+ "loss": 0.3172,
999
+ "mean_token_accuracy": 0.9116800054907799,
1000
+ "num_tokens": 31119505.0,
1001
+ "step": 980
1002
+ },
1003
+ {
1004
+ "entropy": 0.30036033764481546,
1005
+ "epoch": 1.6073893625659763,
1006
+ "grad_norm": 0.11376953125,
1007
+ "learning_rate": 9.351800043486823e-05,
1008
+ "loss": 0.298,
1009
+ "mean_token_accuracy": 0.9167301289737224,
1010
+ "num_tokens": 31433788.0,
1011
+ "step": 990
1012
+ },
1013
+ {
1014
+ "entropy": 0.3045342108234763,
1015
+ "epoch": 1.6236297198538368,
1016
+ "grad_norm": 0.11572265625,
1017
+ "learning_rate": 9.176965208095265e-05,
1018
+ "loss": 0.3011,
1019
+ "mean_token_accuracy": 0.915463775396347,
1020
+ "num_tokens": 31754135.0,
1021
+ "step": 1000
1022
+ },
1023
+ {
1024
+ "epoch": 1.6236297198538368,
1025
+ "eval_entropy": 0.3258335756436559,
1026
+ "eval_loss": 0.3386901617050171,
1027
+ "eval_mean_token_accuracy": 0.9073542472515398,
1028
+ "eval_num_tokens": 31754135.0,
1029
+ "eval_runtime": 177.024,
1030
+ "eval_samples_per_second": 2.954,
1031
+ "eval_steps_per_second": 1.48,
1032
+ "step": 1000
1033
+ },
1034
+ {
1035
+ "entropy": 0.3127696432173252,
1036
+ "epoch": 1.6398700771416972,
1037
+ "grad_norm": 0.11328125,
1038
+ "learning_rate": 9.002383320445163e-05,
1039
+ "loss": 0.3115,
1040
+ "mean_token_accuracy": 0.9123898334801197,
1041
+ "num_tokens": 32071093.0,
1042
+ "step": 1010
1043
+ },
1044
+ {
1045
+ "entropy": 0.32986372373998163,
1046
+ "epoch": 1.6561104344295574,
1047
+ "grad_norm": 0.11962890625,
1048
+ "learning_rate": 8.82810803573385e-05,
1049
+ "loss": 0.3244,
1050
+ "mean_token_accuracy": 0.9100102588534356,
1051
+ "num_tokens": 32391792.0,
1052
+ "step": 1020
1053
+ },
1054
+ {
1055
+ "entropy": 0.2965856045484543,
1056
+ "epoch": 1.6723507917174176,
1057
+ "grad_norm": 0.11279296875,
1058
+ "learning_rate": 8.654192914928739e-05,
1059
+ "loss": 0.2979,
1060
+ "mean_token_accuracy": 0.9166141480207444,
1061
+ "num_tokens": 32710598.0,
1062
+ "step": 1030
1063
+ },
1064
+ {
1065
+ "entropy": 0.2905145835131407,
1066
+ "epoch": 1.688591149005278,
1067
+ "grad_norm": 0.11376953125,
1068
+ "learning_rate": 8.480691408306097e-05,
1069
+ "loss": 0.2837,
1070
+ "mean_token_accuracy": 0.9194815665483475,
1071
+ "num_tokens": 33028070.0,
1072
+ "step": 1040
1073
+ },
1074
+ {
1075
+ "entropy": 0.2960927043110132,
1076
+ "epoch": 1.7048315062931385,
1077
+ "grad_norm": 0.1142578125,
1078
+ "learning_rate": 8.307656839023909e-05,
1079
+ "loss": 0.2971,
1080
+ "mean_token_accuracy": 0.9165702179074288,
1081
+ "num_tokens": 33345066.0,
1082
+ "step": 1050
1083
+ },
1084
+ {
1085
+ "entropy": 0.3149249626323581,
1086
+ "epoch": 1.7210718635809987,
1087
+ "grad_norm": 0.115234375,
1088
+ "learning_rate": 8.135142386733794e-05,
1089
+ "loss": 0.3076,
1090
+ "mean_token_accuracy": 0.9137652173638344,
1091
+ "num_tokens": 33662026.0,
1092
+ "step": 1060
1093
+ },
1094
+ {
1095
+ "entropy": 0.30231469254940746,
1096
+ "epoch": 1.7373122208688592,
1097
+ "grad_norm": 0.1181640625,
1098
+ "learning_rate": 7.963201071236971e-05,
1099
+ "loss": 0.302,
1100
+ "mean_token_accuracy": 0.9156768411397934,
1101
+ "num_tokens": 33978146.0,
1102
+ "step": 1070
1103
+ },
1104
+ {
1105
+ "entropy": 0.3091453406959772,
1106
+ "epoch": 1.7535525781567194,
1107
+ "grad_norm": 0.10400390625,
1108
+ "learning_rate": 7.791885736189447e-05,
1109
+ "loss": 0.3013,
1110
+ "mean_token_accuracy": 0.9143429882824421,
1111
+ "num_tokens": 34296547.0,
1112
+ "step": 1080
1113
+ },
1114
+ {
1115
+ "entropy": 0.2943760992027819,
1116
+ "epoch": 1.7697929354445798,
1117
+ "grad_norm": 0.12255859375,
1118
+ "learning_rate": 7.621249032861249e-05,
1119
+ "loss": 0.2944,
1120
+ "mean_token_accuracy": 0.9172896653413772,
1121
+ "num_tokens": 34613598.0,
1122
+ "step": 1090
1123
+ },
1124
+ {
1125
+ "entropy": 0.29523692447692157,
1126
+ "epoch": 1.7860332927324403,
1127
+ "grad_norm": 0.11669921875,
1128
+ "learning_rate": 7.451343403954856e-05,
1129
+ "loss": 0.2896,
1130
+ "mean_token_accuracy": 0.9178669437766075,
1131
+ "num_tokens": 34930737.0,
1132
+ "step": 1100
1133
+ },
1134
+ {
1135
+ "entropy": 0.30031131571158765,
1136
+ "epoch": 1.8022736500203005,
1137
+ "grad_norm": 0.11669921875,
1138
+ "learning_rate": 7.282221067487673e-05,
1139
+ "loss": 0.3018,
1140
+ "mean_token_accuracy": 0.9155903697013855,
1141
+ "num_tokens": 35247543.0,
1142
+ "step": 1110
1143
+ },
1144
+ {
1145
+ "entropy": 0.31066682981327176,
1146
+ "epoch": 1.8185140073081607,
1147
+ "grad_norm": 0.11181640625,
1148
+ "learning_rate": 7.113934000743598e-05,
1149
+ "loss": 0.3016,
1150
+ "mean_token_accuracy": 0.9159741207957268,
1151
+ "num_tokens": 35563846.0,
1152
+ "step": 1120
1153
+ },
1154
+ {
1155
+ "entropy": 0.3058769850060344,
1156
+ "epoch": 1.8347543645960211,
1157
+ "grad_norm": 0.11865234375,
1158
+ "learning_rate": 6.946533924298566e-05,
1159
+ "loss": 0.3064,
1160
+ "mean_token_accuracy": 0.9143878504633903,
1161
+ "num_tokens": 35880192.0,
1162
+ "step": 1130
1163
+ },
1164
+ {
1165
+ "entropy": 0.3041055051609874,
1166
+ "epoch": 1.8509947218838816,
1167
+ "grad_norm": 0.1279296875,
1168
+ "learning_rate": 6.78007228612497e-05,
1169
+ "loss": 0.3005,
1170
+ "mean_token_accuracy": 0.9166514202952385,
1171
+ "num_tokens": 36199306.0,
1172
+ "step": 1140
1173
+ },
1174
+ {
1175
+ "entropy": 0.2977755956351757,
1176
+ "epoch": 1.8672350791717418,
1177
+ "grad_norm": 0.11865234375,
1178
+ "learning_rate": 6.614600245779894e-05,
1179
+ "loss": 0.293,
1180
+ "mean_token_accuracy": 0.9174539044499397,
1181
+ "num_tokens": 36513771.0,
1182
+ "step": 1150
1183
+ },
1184
+ {
1185
+ "entropy": 0.29172705616801975,
1186
+ "epoch": 1.883475436459602,
1187
+ "grad_norm": 0.12890625,
1188
+ "learning_rate": 6.45016865868195e-05,
1189
+ "loss": 0.2892,
1190
+ "mean_token_accuracy": 0.9188766203820705,
1191
+ "num_tokens": 36831018.0,
1192
+ "step": 1160
1193
+ },
1194
+ {
1195
+ "entropy": 0.3056895272806287,
1196
+ "epoch": 1.8997157937474625,
1197
+ "grad_norm": 0.11083984375,
1198
+ "learning_rate": 6.286828060481626e-05,
1199
+ "loss": 0.3017,
1200
+ "mean_token_accuracy": 0.9152774572372436,
1201
+ "num_tokens": 37150959.0,
1202
+ "step": 1170
1203
+ },
1204
+ {
1205
+ "entropy": 0.3092532352544367,
1206
+ "epoch": 1.915956151035323,
1207
+ "grad_norm": 0.1240234375,
1208
+ "learning_rate": 6.124628651529875e-05,
1209
+ "loss": 0.3056,
1210
+ "mean_token_accuracy": 0.9151738248765469,
1211
+ "num_tokens": 37466849.0,
1212
+ "step": 1180
1213
+ },
1214
+ {
1215
+ "entropy": 0.29272988215088847,
1216
+ "epoch": 1.9321965083231831,
1217
+ "grad_norm": 0.126953125,
1218
+ "learning_rate": 5.963620281449778e-05,
1219
+ "loss": 0.2913,
1220
+ "mean_token_accuracy": 0.9184561900794506,
1221
+ "num_tokens": 37786024.0,
1222
+ "step": 1190
1223
+ },
1224
+ {
1225
+ "entropy": 0.28097219932824374,
1226
+ "epoch": 1.9484368656110433,
1227
+ "grad_norm": 0.1240234375,
1228
+ "learning_rate": 5.80385243381599e-05,
1229
+ "loss": 0.2751,
1230
+ "mean_token_accuracy": 0.9222856566309929,
1231
+ "num_tokens": 38104138.0,
1232
+ "step": 1200
1233
+ },
1234
+ {
1235
+ "entropy": 0.31009797360748054,
1236
+ "epoch": 1.9646772228989038,
1237
+ "grad_norm": 0.111328125,
1238
+ "learning_rate": 5.645374210946674e-05,
1239
+ "loss": 0.303,
1240
+ "mean_token_accuracy": 0.9149694032967091,
1241
+ "num_tokens": 38420179.0,
1242
+ "step": 1210
1243
+ },
1244
+ {
1245
+ "entropy": 0.28405070351436734,
1246
+ "epoch": 1.9809175801867642,
1247
+ "grad_norm": 0.12353515625,
1248
+ "learning_rate": 5.488234318812636e-05,
1249
+ "loss": 0.2821,
1250
+ "mean_token_accuracy": 0.9190818406641483,
1251
+ "num_tokens": 38738629.0,
1252
+ "step": 1220
1253
+ },
1254
+ {
1255
+ "entropy": 0.2817179733887315,
1256
+ "epoch": 1.9971579374746244,
1257
+ "grad_norm": 0.11083984375,
1258
+ "learning_rate": 5.332481052068243e-05,
1259
+ "loss": 0.278,
1260
+ "mean_token_accuracy": 0.9208778738975525,
1261
+ "num_tokens": 39056765.0,
1262
+ "step": 1230
1263
+ },
1264
+ {
1265
+ "entropy": 0.31614991583121127,
1266
+ "epoch": 2.0129922858302884,
1267
+ "grad_norm": 0.1162109375,
1268
+ "learning_rate": 5.1781622792087735e-05,
1269
+ "loss": 0.3034,
1270
+ "mean_token_accuracy": 0.915187330582203,
1271
+ "num_tokens": 39369100.0,
1272
+ "step": 1240
1273
+ },
1274
+ {
1275
+ "entropy": 0.2791068171150982,
1276
+ "epoch": 2.0292326431181484,
1277
+ "grad_norm": 0.1259765625,
1278
+ "learning_rate": 5.0253254278587195e-05,
1279
+ "loss": 0.2719,
1280
+ "mean_token_accuracy": 0.9229367971420288,
1281
+ "num_tokens": 39685618.0,
1282
+ "step": 1250
1283
+ },
1284
+ {
1285
+ "entropy": 0.26613821778446434,
1286
+ "epoch": 2.045473000406009,
1287
+ "grad_norm": 0.11962890625,
1288
+ "learning_rate": 4.8740174701956085e-05,
1289
+ "loss": 0.2589,
1290
+ "mean_token_accuracy": 0.9257113888859749,
1291
+ "num_tokens": 40006044.0,
1292
+ "step": 1260
1293
+ },
1294
+ {
1295
+ "entropy": 0.26739490162581203,
1296
+ "epoch": 2.0617133576938693,
1297
+ "grad_norm": 0.1298828125,
1298
+ "learning_rate": 4.724284908513802e-05,
1299
+ "loss": 0.258,
1300
+ "mean_token_accuracy": 0.9269713960587979,
1301
+ "num_tokens": 40324361.0,
1302
+ "step": 1270
1303
+ },
1304
+ {
1305
+ "entropy": 0.2743425130844116,
1306
+ "epoch": 2.0779537149817298,
1307
+ "grad_norm": 0.11865234375,
1308
+ "learning_rate": 4.576173760932658e-05,
1309
+ "loss": 0.2659,
1310
+ "mean_token_accuracy": 0.923577631264925,
1311
+ "num_tokens": 40641432.0,
1312
+ "step": 1280
1313
+ },
1314
+ {
1315
+ "entropy": 0.2544120085425675,
1316
+ "epoch": 2.0941940722695898,
1317
+ "grad_norm": 0.12109375,
1318
+ "learning_rate": 4.429729547253574e-05,
1319
+ "loss": 0.2481,
1320
+ "mean_token_accuracy": 0.9286975994706154,
1321
+ "num_tokens": 40961580.0,
1322
+ "step": 1290
1323
+ },
1324
+ {
1325
+ "entropy": 0.26631462909281256,
1326
+ "epoch": 2.11043442955745,
1327
+ "grad_norm": 0.11962890625,
1328
+ "learning_rate": 4.2849972749701104e-05,
1329
+ "loss": 0.2616,
1330
+ "mean_token_accuracy": 0.9257244259119034,
1331
+ "num_tokens": 41280252.0,
1332
+ "step": 1300
1333
+ },
1334
+ {
1335
+ "entropy": 0.2599586082622409,
1336
+ "epoch": 2.1266747868453106,
1337
+ "grad_norm": 0.1171875,
1338
+ "learning_rate": 4.142021425435612e-05,
1339
+ "loss": 0.2498,
1340
+ "mean_token_accuracy": 0.9278856895864009,
1341
+ "num_tokens": 41599525.0,
1342
+ "step": 1310
1343
+ },
1344
+ {
1345
+ "entropy": 0.2707246173173189,
1346
+ "epoch": 2.142915144133171,
1347
+ "grad_norm": 0.125,
1348
+ "learning_rate": 4.0008459401924936e-05,
1349
+ "loss": 0.2634,
1350
+ "mean_token_accuracy": 0.9242307640612125,
1351
+ "num_tokens": 41915594.0,
1352
+ "step": 1320
1353
+ },
1354
+ {
1355
+ "entropy": 0.2711412087082863,
1356
+ "epoch": 2.159155501421031,
1357
+ "grad_norm": 0.126953125,
1358
+ "learning_rate": 3.8615142074674625e-05,
1359
+ "loss": 0.2641,
1360
+ "mean_token_accuracy": 0.9243660770356655,
1361
+ "num_tokens": 42229552.0,
1362
+ "step": 1330
1363
+ },
1364
+ {
1365
+ "entropy": 0.26722599640488626,
1366
+ "epoch": 2.1753958587088915,
1367
+ "grad_norm": 0.126953125,
1368
+ "learning_rate": 3.7240690488367833e-05,
1369
+ "loss": 0.2595,
1370
+ "mean_token_accuracy": 0.9257352128624916,
1371
+ "num_tokens": 42547446.0,
1372
+ "step": 1340
1373
+ },
1374
+ {
1375
+ "entropy": 0.260900554433465,
1376
+ "epoch": 2.191636215996752,
1377
+ "grad_norm": 0.12890625,
1378
+ "learning_rate": 3.588552706065672e-05,
1379
+ "loss": 0.2532,
1380
+ "mean_token_accuracy": 0.9262578003108501,
1381
+ "num_tokens": 42866068.0,
1382
+ "step": 1350
1383
+ },
1384
+ {
1385
+ "entropy": 0.26855619475245474,
1386
+ "epoch": 2.2078765732846124,
1387
+ "grad_norm": 0.125,
1388
+ "learning_rate": 3.4550068281259295e-05,
1389
+ "loss": 0.2627,
1390
+ "mean_token_accuracy": 0.9253914162516594,
1391
+ "num_tokens": 43186333.0,
1392
+ "step": 1360
1393
+ },
1394
+ {
1395
+ "entropy": 0.25198941631242633,
1396
+ "epoch": 2.2241169305724724,
1397
+ "grad_norm": 0.1142578125,
1398
+ "learning_rate": 3.323472458395712e-05,
1399
+ "loss": 0.2422,
1400
+ "mean_token_accuracy": 0.9293296724557877,
1401
+ "num_tokens": 43502312.0,
1402
+ "step": 1370
1403
+ },
1404
+ {
1405
+ "entropy": 0.2605569550767541,
1406
+ "epoch": 2.240357287860333,
1407
+ "grad_norm": 0.115234375,
1408
+ "learning_rate": 3.19399002204547e-05,
1409
+ "loss": 0.2497,
1410
+ "mean_token_accuracy": 0.9273073241114617,
1411
+ "num_tokens": 43820947.0,
1412
+ "step": 1380
1413
+ },
1414
+ {
1415
+ "entropy": 0.2586898487061262,
1416
+ "epoch": 2.2565976451481933,
1417
+ "grad_norm": 0.1279296875,
1418
+ "learning_rate": 3.066599313613849e-05,
1419
+ "loss": 0.2539,
1420
+ "mean_token_accuracy": 0.9264877527952194,
1421
+ "num_tokens": 44138605.0,
1422
+ "step": 1390
1423
+ },
1424
+ {
1425
+ "entropy": 0.26510731065645815,
1426
+ "epoch": 2.2728380024360537,
1427
+ "grad_norm": 0.1220703125,
1428
+ "learning_rate": 2.9413394847774178e-05,
1429
+ "loss": 0.2613,
1430
+ "mean_token_accuracy": 0.9252329200506211,
1431
+ "num_tokens": 44454341.0,
1432
+ "step": 1400
1433
+ },
1434
+ {
1435
+ "entropy": 0.2784864826127887,
1436
+ "epoch": 2.2890783597239137,
1437
+ "grad_norm": 0.134765625,
1438
+ "learning_rate": 2.818249032317981e-05,
1439
+ "loss": 0.2675,
1440
+ "mean_token_accuracy": 0.9228313736617565,
1441
+ "num_tokens": 44770720.0,
1442
+ "step": 1410
1443
+ },
1444
+ {
1445
+ "entropy": 0.2637157242745161,
1446
+ "epoch": 2.305318717011774,
1447
+ "grad_norm": 0.126953125,
1448
+ "learning_rate": 2.6973657862911418e-05,
1449
+ "loss": 0.2574,
1450
+ "mean_token_accuracy": 0.9266756564378739,
1451
+ "num_tokens": 45089446.0,
1452
+ "step": 1420
1453
+ },
1454
+ {
1455
+ "entropy": 0.2700337437912822,
1456
+ "epoch": 2.3215590742996346,
1457
+ "grad_norm": 0.130859375,
1458
+ "learning_rate": 2.578726898399799e-05,
1459
+ "loss": 0.2635,
1460
+ "mean_token_accuracy": 0.9248986080288887,
1461
+ "num_tokens": 45408829.0,
1462
+ "step": 1430
1463
+ },
1464
+ {
1465
+ "entropy": 0.25822389777749777,
1466
+ "epoch": 2.337799431587495,
1467
+ "grad_norm": 0.12255859375,
1468
+ "learning_rate": 2.4623688305761005e-05,
1469
+ "loss": 0.2474,
1470
+ "mean_token_accuracy": 0.9288143701851368,
1471
+ "num_tokens": 45725486.0,
1472
+ "step": 1440
1473
+ },
1474
+ {
1475
+ "entropy": 0.25613431744277476,
1476
+ "epoch": 2.3540397888753555,
1477
+ "grad_norm": 0.1328125,
1478
+ "learning_rate": 2.3483273437754107e-05,
1479
+ "loss": 0.2473,
1480
+ "mean_token_accuracy": 0.9285800620913506,
1481
+ "num_tokens": 46043580.0,
1482
+ "step": 1450
1483
+ },
1484
+ {
1485
+ "entropy": 0.2738852068781853,
1486
+ "epoch": 2.3702801461632155,
1487
+ "grad_norm": 0.1572265625,
1488
+ "learning_rate": 2.2366374869856998e-05,
1489
+ "loss": 0.2696,
1490
+ "mean_token_accuracy": 0.9233844071626663,
1491
+ "num_tokens": 46364834.0,
1492
+ "step": 1460
1493
+ },
1494
+ {
1495
+ "entropy": 0.2616811253130436,
1496
+ "epoch": 2.386520503451076,
1497
+ "grad_norm": 0.140625,
1498
+ "learning_rate": 2.12733358645574e-05,
1499
+ "loss": 0.2551,
1500
+ "mean_token_accuracy": 0.926591832190752,
1501
+ "num_tokens": 46682176.0,
1502
+ "step": 1470
1503
+ },
1504
+ {
1505
+ "entropy": 0.2675771150738001,
1506
+ "epoch": 2.4027608607389364,
1507
+ "grad_norm": 0.1318359375,
1508
+ "learning_rate": 2.0204492351454472e-05,
1509
+ "loss": 0.2583,
1510
+ "mean_token_accuracy": 0.9257503561675549,
1511
+ "num_tokens": 47001783.0,
1512
+ "step": 1480
1513
+ },
1514
+ {
1515
+ "entropy": 0.2594972148537636,
1516
+ "epoch": 2.4190012180267964,
1517
+ "grad_norm": 0.11962890625,
1518
+ "learning_rate": 1.9160172824015586e-05,
1519
+ "loss": 0.2523,
1520
+ "mean_token_accuracy": 0.9283341206610203,
1521
+ "num_tokens": 47318361.0,
1522
+ "step": 1490
1523
+ },
1524
+ {
1525
+ "entropy": 0.25459160562604666,
1526
+ "epoch": 2.435241575314657,
1527
+ "grad_norm": 0.12451171875,
1528
+ "learning_rate": 1.8140698238618846e-05,
1529
+ "loss": 0.2449,
1530
+ "mean_token_accuracy": 0.9285047873854637,
1531
+ "num_tokens": 47636931.0,
1532
+ "step": 1500
1533
+ },
1534
+ {
1535
+ "epoch": 2.435241575314657,
1536
+ "eval_entropy": 0.2933734593102495,
1537
+ "eval_loss": 0.3246920108795166,
1538
+ "eval_mean_token_accuracy": 0.911526195193065,
1539
+ "eval_num_tokens": 47636931.0,
1540
+ "eval_runtime": 176.9613,
1541
+ "eval_samples_per_second": 2.955,
1542
+ "eval_steps_per_second": 1.481,
1543
+ "step": 1500
1544
+ },
1545
+ {
1546
+ "entropy": 0.26183086801320316,
1547
+ "epoch": 2.4514819326025172,
1548
+ "grad_norm": 0.1259765625,
1549
+ "learning_rate": 1.7146381915911624e-05,
1550
+ "loss": 0.2547,
1551
+ "mean_token_accuracy": 0.9276451498270035,
1552
+ "num_tokens": 47956999.0,
1553
+ "step": 1510
1554
+ },
1555
+ {
1556
+ "entropy": 0.2695474956184626,
1557
+ "epoch": 2.4677222898903777,
1558
+ "grad_norm": 0.1328125,
1559
+ "learning_rate": 1.6177529444516194e-05,
1560
+ "loss": 0.2635,
1561
+ "mean_token_accuracy": 0.9245093256235123,
1562
+ "num_tokens": 48274856.0,
1563
+ "step": 1520
1564
+ },
1565
+ {
1566
+ "entropy": 0.2680878189392388,
1567
+ "epoch": 2.483962647178238,
1568
+ "grad_norm": 0.12109375,
1569
+ "learning_rate": 1.5234438587111433e-05,
1570
+ "loss": 0.2625,
1571
+ "mean_token_accuracy": 0.9249465495347977,
1572
+ "num_tokens": 48592891.0,
1573
+ "step": 1530
1574
+ },
1575
+ {
1576
+ "entropy": 0.27772825080901387,
1577
+ "epoch": 2.500203004466098,
1578
+ "grad_norm": 0.12890625,
1579
+ "learning_rate": 1.4317399188919767e-05,
1580
+ "loss": 0.2699,
1581
+ "mean_token_accuracy": 0.9224151849746705,
1582
+ "num_tokens": 48910313.0,
1583
+ "step": 1540
1584
+ },
1585
+ {
1586
+ "entropy": 0.2515021483413875,
1587
+ "epoch": 2.5164433617539586,
1588
+ "grad_norm": 0.12451171875,
1589
+ "learning_rate": 1.342669308862764e-05,
1590
+ "loss": 0.2438,
1591
+ "mean_token_accuracy": 0.9300386533141136,
1592
+ "num_tokens": 49229459.0,
1593
+ "step": 1550
1594
+ },
1595
+ {
1596
+ "entropy": 0.2689725374802947,
1597
+ "epoch": 2.532683719041819,
1598
+ "grad_norm": 0.1328125,
1599
+ "learning_rate": 1.2562594031766262e-05,
1600
+ "loss": 0.2632,
1601
+ "mean_token_accuracy": 0.9254089832305908,
1602
+ "num_tokens": 49543124.0,
1603
+ "step": 1560
1604
+ },
1605
+ {
1606
+ "entropy": 0.2733833186328411,
1607
+ "epoch": 2.548924076329679,
1608
+ "grad_norm": 0.1240234375,
1609
+ "learning_rate": 1.1725367586580161e-05,
1610
+ "loss": 0.2677,
1611
+ "mean_token_accuracy": 0.9235794551670551,
1612
+ "num_tokens": 49860038.0,
1613
+ "step": 1570
1614
+ },
1615
+ {
1616
+ "entropy": 0.26735376939177513,
1617
+ "epoch": 2.5651644336175394,
1618
+ "grad_norm": 0.125,
1619
+ "learning_rate": 1.0915271062408428e-05,
1620
+ "loss": 0.2587,
1621
+ "mean_token_accuracy": 0.9263471320271492,
1622
+ "num_tokens": 50174575.0,
1623
+ "step": 1580
1624
+ },
1625
+ {
1626
+ "entropy": 0.2635248651728034,
1627
+ "epoch": 2.5814047909054,
1628
+ "grad_norm": 0.1171875,
1629
+ "learning_rate": 1.0132553430604608e-05,
1630
+ "loss": 0.2566,
1631
+ "mean_token_accuracy": 0.9271455019712448,
1632
+ "num_tokens": 50489544.0,
1633
+ "step": 1590
1634
+ },
1635
+ {
1636
+ "entropy": 0.2556127179414034,
1637
+ "epoch": 2.5976451481932603,
1638
+ "grad_norm": 0.12060546875,
1639
+ "learning_rate": 9.377455248018963e-06,
1640
+ "loss": 0.2482,
1641
+ "mean_token_accuracy": 0.9281990304589272,
1642
+ "num_tokens": 50806996.0,
1643
+ "step": 1600
1644
+ },
1645
+ {
1646
+ "entropy": 0.26483127316460014,
1647
+ "epoch": 2.6138855054811208,
1648
+ "grad_norm": 0.1220703125,
1649
+ "learning_rate": 8.650208583066689e-06,
1650
+ "loss": 0.257,
1651
+ "mean_token_accuracy": 0.9260235637426376,
1652
+ "num_tokens": 51122784.0,
1653
+ "step": 1610
1654
+ },
1655
+ {
1656
+ "entropy": 0.25958297261968255,
1657
+ "epoch": 2.630125862768981,
1658
+ "grad_norm": 0.12451171875,
1659
+ "learning_rate": 7.951036944405287e-06,
1660
+ "loss": 0.2545,
1661
+ "mean_token_accuracy": 0.9273005492985249,
1662
+ "num_tokens": 51440528.0,
1663
+ "step": 1620
1664
+ },
1665
+ {
1666
+ "entropy": 0.2685284251347184,
1667
+ "epoch": 2.646366220056841,
1668
+ "grad_norm": 0.130859375,
1669
+ "learning_rate": 7.2801552122422454e-06,
1670
+ "loss": 0.262,
1671
+ "mean_token_accuracy": 0.9255671858787536,
1672
+ "num_tokens": 51758667.0,
1673
+ "step": 1630
1674
+ },
1675
+ {
1676
+ "entropy": 0.27078196927905085,
1677
+ "epoch": 2.6626065773447016,
1678
+ "grad_norm": 0.13671875,
1679
+ "learning_rate": 6.637769572294905e-06,
1680
+ "loss": 0.2671,
1681
+ "mean_token_accuracy": 0.9235647596418858,
1682
+ "num_tokens": 52074499.0,
1683
+ "step": 1640
1684
+ },
1685
+ {
1686
+ "entropy": 0.2435209064744413,
1687
+ "epoch": 2.678846934632562,
1688
+ "grad_norm": 0.123046875,
1689
+ "learning_rate": 6.024077452422128e-06,
1690
+ "loss": 0.2355,
1691
+ "mean_token_accuracy": 0.9319050885736943,
1692
+ "num_tokens": 52390967.0,
1693
+ "step": 1650
1694
+ },
1695
+ {
1696
+ "entropy": 0.26512936893850564,
1697
+ "epoch": 2.695087291920422,
1698
+ "grad_norm": 0.1259765625,
1699
+ "learning_rate": 5.439267461947883e-06,
1700
+ "loss": 0.2566,
1701
+ "mean_token_accuracy": 0.9259013153612614,
1702
+ "num_tokens": 52705695.0,
1703
+ "step": 1660
1704
+ },
1705
+ {
1706
+ "entropy": 0.25156018473207953,
1707
+ "epoch": 2.7113276492082825,
1708
+ "grad_norm": 0.126953125,
1709
+ "learning_rate": 4.883519333694742e-06,
1710
+ "loss": 0.2439,
1711
+ "mean_token_accuracy": 0.9301516726613045,
1712
+ "num_tokens": 53023475.0,
1713
+ "step": 1670
1714
+ },
1715
+ {
1716
+ "entropy": 0.2691020904108882,
1717
+ "epoch": 2.727568006496143,
1718
+ "grad_norm": 0.1279296875,
1719
+ "learning_rate": 4.3570038687458125e-06,
1720
+ "loss": 0.2606,
1721
+ "mean_token_accuracy": 0.9248066917061806,
1722
+ "num_tokens": 53343151.0,
1723
+ "step": 1680
1724
+ },
1725
+ {
1726
+ "entropy": 0.2650392297655344,
1727
+ "epoch": 2.7438083637840034,
1728
+ "grad_norm": 0.12060546875,
1729
+ "learning_rate": 3.859882883951371e-06,
1730
+ "loss": 0.2582,
1731
+ "mean_token_accuracy": 0.9258100286126136,
1732
+ "num_tokens": 53660043.0,
1733
+ "step": 1690
1734
+ },
1735
+ {
1736
+ "entropy": 0.2701218418776989,
1737
+ "epoch": 2.760048721071864,
1738
+ "grad_norm": 0.1279296875,
1739
+ "learning_rate": 3.3923091621968493e-06,
1740
+ "loss": 0.2625,
1741
+ "mean_token_accuracy": 0.9250252448022366,
1742
+ "num_tokens": 53974228.0,
1743
+ "step": 1700
1744
+ },
1745
+ {
1746
+ "entropy": 0.26398087330162523,
1747
+ "epoch": 2.776289078359724,
1748
+ "grad_norm": 0.12109375,
1749
+ "learning_rate": 2.954426405447297e-06,
1750
+ "loss": 0.2567,
1751
+ "mean_token_accuracy": 0.9267565242946147,
1752
+ "num_tokens": 54294390.0,
1753
+ "step": 1710
1754
+ },
1755
+ {
1756
+ "entropy": 0.25762436566874386,
1757
+ "epoch": 2.7925294356475843,
1758
+ "grad_norm": 0.1279296875,
1759
+ "learning_rate": 2.546369190582576e-06,
1760
+ "loss": 0.2513,
1761
+ "mean_token_accuracy": 0.9276721946895122,
1762
+ "num_tokens": 54606801.0,
1763
+ "step": 1720
1764
+ },
1765
+ {
1766
+ "entropy": 0.25800341702997687,
1767
+ "epoch": 2.8087697929354447,
1768
+ "grad_norm": 0.1298828125,
1769
+ "learning_rate": 2.1682629280372456e-06,
1770
+ "loss": 0.2501,
1771
+ "mean_token_accuracy": 0.927888036519289,
1772
+ "num_tokens": 54926091.0,
1773
+ "step": 1730
1774
+ },
1775
+ {
1776
+ "entropy": 0.2676691495813429,
1777
+ "epoch": 2.8250101502233047,
1778
+ "grad_norm": 0.11767578125,
1779
+ "learning_rate": 1.820223823257372e-06,
1780
+ "loss": 0.2588,
1781
+ "mean_token_accuracy": 0.926097498089075,
1782
+ "num_tokens": 55243114.0,
1783
+ "step": 1740
1784
+ },
1785
+ {
1786
+ "entropy": 0.2512422949075699,
1787
+ "epoch": 2.841250507511165,
1788
+ "grad_norm": 0.1259765625,
1789
+ "learning_rate": 1.502358840986562e-06,
1790
+ "loss": 0.2415,
1791
+ "mean_token_accuracy": 0.9298646509647369,
1792
+ "num_tokens": 55560960.0,
1793
+ "step": 1750
1794
+ },
1795
+ {
1796
+ "entropy": 0.25036826338618995,
1797
+ "epoch": 2.8574908647990256,
1798
+ "grad_norm": 0.11572265625,
1799
+ "learning_rate": 1.2147656723918821e-06,
1800
+ "loss": 0.2444,
1801
+ "mean_token_accuracy": 0.9300106823444366,
1802
+ "num_tokens": 55878679.0,
1803
+ "step": 1760
1804
+ },
1805
+ {
1806
+ "entropy": 0.2511869052425027,
1807
+ "epoch": 2.873731222086886,
1808
+ "grad_norm": 0.12890625,
1809
+ "learning_rate": 9.575327050398875e-07,
1810
+ "loss": 0.2445,
1811
+ "mean_token_accuracy": 0.9300001263618469,
1812
+ "num_tokens": 56198045.0,
1813
+ "step": 1770
1814
+ },
1815
+ {
1816
+ "entropy": 0.26052912287414076,
1817
+ "epoch": 2.8899715793747465,
1818
+ "grad_norm": 0.12109375,
1819
+ "learning_rate": 7.307389957320276e-07,
1820
+ "loss": 0.254,
1821
+ "mean_token_accuracy": 0.9268272012472153,
1822
+ "num_tokens": 56516117.0,
1823
+ "step": 1780
1824
+ },
1825
+ {
1826
+ "entropy": 0.28557793945074084,
1827
+ "epoch": 2.9062119366626065,
1828
+ "grad_norm": 0.1298828125,
1829
+ "learning_rate": 5.344542462076496e-07,
1830
+ "loss": 0.2782,
1831
+ "mean_token_accuracy": 0.921804615855217,
1832
+ "num_tokens": 56835068.0,
1833
+ "step": 1790
1834
+ },
1835
+ {
1836
+ "entropy": 0.26550282556563615,
1837
+ "epoch": 2.922452293950467,
1838
+ "grad_norm": 0.12451171875,
1839
+ "learning_rate": 3.687387817221999e-07,
1840
+ "loss": 0.2607,
1841
+ "mean_token_accuracy": 0.9259473696351052,
1842
+ "num_tokens": 57150238.0,
1843
+ "step": 1800
1844
+ },
1845
+ {
1846
+ "entropy": 0.2448538973927498,
1847
+ "epoch": 2.9386926512383273,
1848
+ "grad_norm": 0.11376953125,
1849
+ "learning_rate": 2.3364353250716619e-07,
1850
+ "loss": 0.2381,
1851
+ "mean_token_accuracy": 0.9314554944634438,
1852
+ "num_tokens": 57465824.0,
1853
+ "step": 1810
1854
+ },
1855
+ {
1856
+ "entropy": 0.2839592194184661,
1857
+ "epoch": 2.9549330085261873,
1858
+ "grad_norm": 0.12353515625,
1859
+ "learning_rate": 1.292100181173872e-07,
1860
+ "loss": 0.2776,
1861
+ "mean_token_accuracy": 0.921784307807684,
1862
+ "num_tokens": 57785604.0,
1863
+ "step": 1820
1864
+ },
1865
+ {
1866
+ "entropy": 0.2578106375411153,
1867
+ "epoch": 2.971173365814048,
1868
+ "grad_norm": 0.126953125,
1869
+ "learning_rate": 5.547033467060425e-08,
1870
+ "loss": 0.2512,
1871
+ "mean_token_accuracy": 0.9276329085230828,
1872
+ "num_tokens": 58101643.0,
1873
+ "step": 1830
1874
+ },
1875
+ {
1876
+ "entropy": 0.2721929314546287,
1877
+ "epoch": 2.9874137231019082,
1878
+ "grad_norm": 0.12109375,
1879
+ "learning_rate": 1.2447144983229742e-08,
1880
+ "loss": 0.2666,
1881
+ "mean_token_accuracy": 0.9238130748271942,
1882
+ "num_tokens": 58420389.0,
1883
+ "step": 1840
1884
+ }
1885
+ ],
1886
+ "logging_steps": 10,
1887
+ "max_steps": 1848,
1888
+ "num_input_tokens_seen": 0,
1889
+ "num_train_epochs": 3,
1890
+ "save_steps": 500,
1891
+ "stateful_callbacks": {
1892
+ "TrainerControl": {
1893
+ "args": {
1894
+ "should_epoch_stop": false,
1895
+ "should_evaluate": false,
1896
+ "should_log": false,
1897
+ "should_save": true,
1898
+ "should_training_stop": true
1899
+ },
1900
+ "attributes": {}
1901
+ }
1902
+ },
1903
+ "total_flos": 2.382555575899939e+18,
1904
+ "train_batch_size": 2,
1905
+ "trial_name": null,
1906
+ "trial_params": null
1907
+ }
checkpoint-1848/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdf35871814e6362e8e3bb1e06bd89d86d567b552dd8281db302a8194398bec8
3
+ size 6008
model_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ Base Model: deepseek-ai/deepseek-coder-6.7b-instruct
2
+ Fine-tuned for: Minecraft Forge Mod Development
3
+ Forge Version: 1.21.11
4
+ MC Version: 1.21.11
5
+ MCP Version: 20251209.095502
6
+ Training Samples: 13936
7
+ Validation Samples: 734
special_tokens_map.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|EOT|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|EOT|>"
17
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "32000": {
7
+ "content": "õ",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "32001": {
15
+ "content": "÷",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "32002": {
23
+ "content": "Á",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32003": {
31
+ "content": "ý",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "32004": {
39
+ "content": "À",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "32005": {
47
+ "content": "ÿ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "32006": {
55
+ "content": "ø",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "32007": {
63
+ "content": "ú",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "32008": {
71
+ "content": "þ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "32009": {
79
+ "content": "ü",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "32010": {
87
+ "content": "ù",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "32011": {
95
+ "content": "ö",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "32012": {
103
+ "content": "û",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "32013": {
111
+ "content": "<|begin▁of▁sentence|>",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32014": {
119
+ "content": "<|end▁of▁sentence|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32015": {
127
+ "content": "<|fim▁hole|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "32016": {
135
+ "content": "<|fim▁begin|>",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "32017": {
143
+ "content": "<|fim▁end|>",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "32018": {
151
+ "content": "<pad>",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "32019": {
159
+ "content": "<|User|>",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "32020": {
167
+ "content": "<|Assistant|>",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "32021": {
175
+ "content": "<|EOT|>",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": true
181
+ }
182
+ },
183
+ "bos_token": "<|begin▁of▁sentence|>",
184
+ "clean_up_tokenization_spaces": false,
185
+ "eos_token": "<|EOT|>",
186
+ "extra_special_tokens": {},
187
+ "legacy": true,
188
+ "model_max_length": 16384,
189
+ "pad_token": "<|EOT|>",
190
+ "sp_model_kwargs": {},
191
+ "tokenizer_class": "LlamaTokenizerFast",
192
+ "unk_token": null,
193
+ "use_default_system_prompt": false
194
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdf35871814e6362e8e3bb1e06bd89d86d567b552dd8281db302a8194398bec8
3
+ size 6008