Update README.md
Browse files
README.md
CHANGED
|
@@ -1,19 +1,64 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
tags:
|
| 4 |
-
- automl
|
| 5 |
-
- autogluon
|
| 6 |
-
- image-classification
|
| 7 |
-
- neural-network
|
|
|
|
|
|
|
| 8 |
library_name: autogluon
|
| 9 |
datasets:
|
| 10 |
-
- ecopus/sign_identification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
# HW2 Neural AutoML — AutoGluon MultiModalPredictor
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
Trained for HW2 (image classification) using a classmate's dataset.
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
tags:
|
| 4 |
+
- automl
|
| 5 |
+
- autogluon
|
| 6 |
+
- image-classification
|
| 7 |
+
- neural-network
|
| 8 |
+
- computer-vision
|
| 9 |
+
- education
|
| 10 |
library_name: autogluon
|
| 11 |
datasets:
|
| 12 |
+
- ecopus/sign_identification
|
| 13 |
+
model-index:
|
| 14 |
+
- name: HW2 Neural AutoML — AutoGluon MultiModalPredictor (Signs)
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
name: Image Classification
|
| 18 |
+
type: image-classification
|
| 19 |
+
dataset:
|
| 20 |
+
name: ecopus/sign_identification
|
| 21 |
+
type: ecopus/sign_identification
|
| 22 |
+
split: test
|
| 23 |
+
metrics:
|
| 24 |
+
- name: Accuracy
|
| 25 |
+
type: accuracy
|
| 26 |
+
value: 0.4286
|
| 27 |
+
- name: Macro-F1
|
| 28 |
+
type: f1
|
| 29 |
+
value: 0.3
|
| 30 |
---
|
| 31 |
|
| 32 |
+
# HW2 Neural AutoML — AutoGluon MultiModalPredictor (Signs)
|
| 33 |
|
| 34 |
+
**Course:** 24-679 — HW2: Models
|
| 35 |
+
**Task:** Supervised image classification on a classmate’s dataset (`ecopus/sign_identification`) using **AutoGluon Multimodal**.
|
| 36 |
+
**Goal:** Build a compact model under a small compute budget and report results with a clear, reproducible pipeline.
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
## Summary
|
| 40 |
+
|
| 41 |
+
- **Backbone:** `resnet18` (via timm)
|
| 42 |
+
- **Input resolution:** 224×224 (images resized in Colab)
|
| 43 |
+
- **Train/Val/Test:** ~64% / 16% / 20% split (stratified)
|
| 44 |
+
- **Epochs:** 3 (short budget, early-stop not overridden)
|
| 45 |
+
- **Batch size:** 8
|
| 46 |
+
- **Metric (val):** Accuracy + Macro-F1
|
| 47 |
+
- **Result (test):** Accuracy = **0.4286**, Macro-F1 = **0.3**
|
| 48 |
+
|
| 49 |
+
## Dataset
|
| 50 |
+
|
| 51 |
+
- **Source:** `ecopus/sign_identification`
|
| 52 |
+
- **Task:** Multiclass sign recognition
|
| 53 |
+
- **Classes:** [N_CLASSES] (e.g., list them if short)
|
| 54 |
+
- **Preprocessing:**
|
| 55 |
+
- `datasets` → decode to `PIL`
|
| 56 |
+
- Resize to 224×224, RGB
|
| 57 |
+
- Labels normalized to integers/strings for AutoGluon
|
| 58 |
+
|
| 59 |
+
## Training & AutoML Setup
|
| 60 |
+
|
| 61 |
+
**Library:** `autogluon.multimodal.MultiModalPredictor`
|
| 62 |
+
**Problem type:** `multiclass`
|
| 63 |
+
**Eval metric:** `accuracy` (Macro-F1 also reported)
|
| 64 |
|
|
|