george2cool36 commited on
Commit
0fc59fe
·
verified ·
1 Parent(s): 450323a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -10
README.md CHANGED
@@ -1,19 +1,64 @@
1
  ---
2
  license: mit
3
  tags:
4
- - automl
5
- - autogluon
6
- - image-classification
7
- - neural-network
 
 
8
  library_name: autogluon
9
  datasets:
10
- - ecopus/sign_identification # replace if needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
- # HW2 Neural AutoML — AutoGluon MultiModalPredictor
14
 
15
- Artifacts:
16
- - `ag_image_predictor.pkl` predictor pickled with cloudpickle
17
- - `ag_image_predictor_dir.zip` zipped native AutoGluon predictor directory
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
- Trained for HW2 (image classification) using a classmate's dataset.
 
1
  ---
2
  license: mit
3
  tags:
4
+ - automl
5
+ - autogluon
6
+ - image-classification
7
+ - neural-network
8
+ - computer-vision
9
+ - education
10
  library_name: autogluon
11
  datasets:
12
+ - ecopus/sign_identification
13
+ model-index:
14
+ - name: HW2 Neural AutoML — AutoGluon MultiModalPredictor (Signs)
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: ecopus/sign_identification
21
+ type: ecopus/sign_identification
22
+ split: test
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.4286
27
+ - name: Macro-F1
28
+ type: f1
29
+ value: 0.3
30
  ---
31
 
32
+ # HW2 Neural AutoML — AutoGluon MultiModalPredictor (Signs)
33
 
34
+ **Course:** 24-679 — HW2: Models
35
+ **Task:** Supervised image classification on a classmate’s dataset (`ecopus/sign_identification`) using **AutoGluon Multimodal**.
36
+ **Goal:** Build a compact model under a small compute budget and report results with a clear, reproducible pipeline.
37
+
38
+
39
+ ## Summary
40
+
41
+ - **Backbone:** `resnet18` (via timm)
42
+ - **Input resolution:** 224×224 (images resized in Colab)
43
+ - **Train/Val/Test:** ~64% / 16% / 20% split (stratified)
44
+ - **Epochs:** 3 (short budget, early-stop not overridden)
45
+ - **Batch size:** 8
46
+ - **Metric (val):** Accuracy + Macro-F1
47
+ - **Result (test):** Accuracy = **0.4286**, Macro-F1 = **0.3**
48
+
49
+ ## Dataset
50
+
51
+ - **Source:** `ecopus/sign_identification`
52
+ - **Task:** Multiclass sign recognition
53
+ - **Classes:** [N_CLASSES] (e.g., list them if short)
54
+ - **Preprocessing:**
55
+ - `datasets` → decode to `PIL`
56
+ - Resize to 224×224, RGB
57
+ - Labels normalized to integers/strings for AutoGluon
58
+
59
+ ## Training & AutoML Setup
60
+
61
+ **Library:** `autogluon.multimodal.MultiModalPredictor`
62
+ **Problem type:** `multiclass`
63
+ **Eval metric:** `accuracy` (Macro-F1 also reported)
64