Commit
·
d450bf5
1
Parent(s):
9afaa83
Add VLM image classification script
Browse files- Uses vLLM's GuidedDecodingParams for structured classification
- Memory-efficient lazy batch processing
- Supports custom classes via CLI args
- vlm-classify.py +404 -0
vlm-classify.py
ADDED
|
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.11"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "datasets",
|
| 5 |
+
# "huggingface-hub[hf_transfer]",
|
| 6 |
+
# "pillow",
|
| 7 |
+
# "toolz",
|
| 8 |
+
# "torch",
|
| 9 |
+
# "tqdm",
|
| 10 |
+
# "transformers",
|
| 11 |
+
# "vllm>=0.6.5",
|
| 12 |
+
# ]
|
| 13 |
+
# ///
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Classify images using Vision Language Models with vLLM.
|
| 17 |
+
|
| 18 |
+
This script processes images through VLMs to classify them into user-defined categories,
|
| 19 |
+
using vLLM's GuidedDecodingParams for structured output.
|
| 20 |
+
|
| 21 |
+
Examples:
|
| 22 |
+
# Basic classification
|
| 23 |
+
uv run vlm-classify.py \\
|
| 24 |
+
username/input-dataset \\
|
| 25 |
+
username/output-dataset \\
|
| 26 |
+
--classes "document,photo,diagram,other"
|
| 27 |
+
|
| 28 |
+
# With custom prompt and model
|
| 29 |
+
uv run vlm-classify.py \\
|
| 30 |
+
username/input-dataset \\
|
| 31 |
+
username/output-dataset \\
|
| 32 |
+
--classes "index-card,manuscript,title-page,other" \\
|
| 33 |
+
--prompt "What type of historical document is this?" \\
|
| 34 |
+
--model Qwen/Qwen2-VL-7B-Instruct
|
| 35 |
+
|
| 36 |
+
# Quick test with sample limit
|
| 37 |
+
uv run vlm-classify.py \\
|
| 38 |
+
davanstrien/sloane-index-cards \\
|
| 39 |
+
username/test-output \\
|
| 40 |
+
--classes "index,content,other" \\
|
| 41 |
+
--max-samples 10
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
import argparse
|
| 45 |
+
import base64
|
| 46 |
+
import io
|
| 47 |
+
import logging
|
| 48 |
+
import os
|
| 49 |
+
import sys
|
| 50 |
+
from collections import Counter
|
| 51 |
+
from typing import List, Optional, Union, Dict, Any
|
| 52 |
+
|
| 53 |
+
import torch
|
| 54 |
+
from PIL import Image
|
| 55 |
+
from datasets import load_dataset, Dataset
|
| 56 |
+
from huggingface_hub import login
|
| 57 |
+
from toolz import partition_all
|
| 58 |
+
from tqdm.auto import tqdm
|
| 59 |
+
from vllm import LLM, SamplingParams
|
| 60 |
+
from vllm.sampling_params import GuidedDecodingParams
|
| 61 |
+
|
| 62 |
+
logging.basicConfig(level=logging.INFO)
|
| 63 |
+
logger = logging.getLogger(__name__)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def image_to_data_uri(image: Union[Image.Image, Dict[str, Any]]) -> str:
|
| 67 |
+
"""Convert image to base64 data URI for VLM processing."""
|
| 68 |
+
if isinstance(image, Image.Image):
|
| 69 |
+
pil_img = image
|
| 70 |
+
elif isinstance(image, dict) and "bytes" in image:
|
| 71 |
+
pil_img = Image.open(io.BytesIO(image["bytes"]))
|
| 72 |
+
else:
|
| 73 |
+
raise ValueError(f"Unsupported image type: {type(image)}")
|
| 74 |
+
|
| 75 |
+
# Convert to RGB if necessary (handle RGBA, grayscale, etc.)
|
| 76 |
+
if pil_img.mode not in ("RGB", "L"):
|
| 77 |
+
pil_img = pil_img.convert("RGB")
|
| 78 |
+
|
| 79 |
+
# Convert to base64
|
| 80 |
+
buf = io.BytesIO()
|
| 81 |
+
pil_img.save(buf, format="JPEG", quality=95)
|
| 82 |
+
base64_str = base64.b64encode(buf.getvalue()).decode()
|
| 83 |
+
return f"data:image/jpeg;base64,{base64_str}"
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def create_classification_messages(
|
| 87 |
+
image: Union[Image.Image, Dict[str, Any]],
|
| 88 |
+
prompt: str,
|
| 89 |
+
) -> List[Dict]:
|
| 90 |
+
"""Create chat messages for VLM classification."""
|
| 91 |
+
image_uri = image_to_data_uri(image)
|
| 92 |
+
|
| 93 |
+
return [
|
| 94 |
+
{
|
| 95 |
+
"role": "user",
|
| 96 |
+
"content": [
|
| 97 |
+
{"type": "image_url", "image_url": {"url": image_uri}},
|
| 98 |
+
{"type": "text", "text": prompt},
|
| 99 |
+
],
|
| 100 |
+
}
|
| 101 |
+
]
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def main(
|
| 105 |
+
input_dataset: str,
|
| 106 |
+
output_dataset: str,
|
| 107 |
+
classes: str,
|
| 108 |
+
prompt: Optional[str] = None,
|
| 109 |
+
image_column: str = "image",
|
| 110 |
+
model: str = "Qwen/Qwen2-VL-7B-Instruct",
|
| 111 |
+
batch_size: int = 8,
|
| 112 |
+
max_samples: Optional[int] = None,
|
| 113 |
+
gpu_memory_utilization: float = 0.9,
|
| 114 |
+
max_model_len: Optional[int] = None,
|
| 115 |
+
tensor_parallel_size: Optional[int] = None,
|
| 116 |
+
split: str = "train",
|
| 117 |
+
hf_token: Optional[str] = None,
|
| 118 |
+
private: bool = False,
|
| 119 |
+
):
|
| 120 |
+
"""Classify images from a dataset using a Vision Language Model."""
|
| 121 |
+
|
| 122 |
+
# Check GPU availability
|
| 123 |
+
if not torch.cuda.is_available():
|
| 124 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
| 125 |
+
logger.error("If running locally, ensure you have a CUDA-capable GPU.")
|
| 126 |
+
logger.error("For cloud execution, use: hf jobs uv run --flavor a10g ...")
|
| 127 |
+
sys.exit(1)
|
| 128 |
+
|
| 129 |
+
# Parse classes
|
| 130 |
+
class_list = [c.strip() for c in classes.split(",")]
|
| 131 |
+
logger.info(f"Classes: {class_list}")
|
| 132 |
+
|
| 133 |
+
# Create default prompt if not provided
|
| 134 |
+
if prompt is None:
|
| 135 |
+
prompt = f"Classify this image into one of the following categories: {', '.join(class_list)}"
|
| 136 |
+
logger.info(f"Prompt template: {prompt}")
|
| 137 |
+
|
| 138 |
+
# Login to HF if token provided
|
| 139 |
+
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
|
| 140 |
+
if HF_TOKEN:
|
| 141 |
+
login(token=HF_TOKEN)
|
| 142 |
+
|
| 143 |
+
# Load dataset
|
| 144 |
+
logger.info(f"Loading dataset: {input_dataset}")
|
| 145 |
+
dataset = load_dataset(input_dataset, split=split)
|
| 146 |
+
|
| 147 |
+
# Validate image column
|
| 148 |
+
if image_column not in dataset.column_names:
|
| 149 |
+
raise ValueError(f"Column '{image_column}' not found. Available: {dataset.column_names}")
|
| 150 |
+
|
| 151 |
+
# Limit samples if requested
|
| 152 |
+
if max_samples:
|
| 153 |
+
dataset = dataset.select(range(min(max_samples, len(dataset))))
|
| 154 |
+
logger.info(f"Limited to {len(dataset)} samples")
|
| 155 |
+
|
| 156 |
+
# Auto-detect tensor parallel size if not specified
|
| 157 |
+
if tensor_parallel_size is None:
|
| 158 |
+
tensor_parallel_size = torch.cuda.device_count()
|
| 159 |
+
logger.info(f"Auto-detected {tensor_parallel_size} GPUs for tensor parallelism")
|
| 160 |
+
|
| 161 |
+
# Initialize vLLM
|
| 162 |
+
logger.info(f"Loading model: {model}")
|
| 163 |
+
llm_kwargs = {
|
| 164 |
+
"model": model,
|
| 165 |
+
"gpu_memory_utilization": gpu_memory_utilization,
|
| 166 |
+
"tensor_parallel_size": tensor_parallel_size,
|
| 167 |
+
"trust_remote_code": True, # Required for some VLMs
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
if max_model_len:
|
| 171 |
+
llm_kwargs["max_model_len"] = max_model_len
|
| 172 |
+
|
| 173 |
+
llm = LLM(**llm_kwargs)
|
| 174 |
+
|
| 175 |
+
# Create guided decoding params for classification
|
| 176 |
+
guided_decoding_params = GuidedDecodingParams(choice=class_list)
|
| 177 |
+
sampling_params = SamplingParams(
|
| 178 |
+
temperature=0.1, # Low temperature for consistent classification
|
| 179 |
+
max_tokens=50, # Classifications are short
|
| 180 |
+
guided_decoding=guided_decoding_params,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
# Process images in batches to avoid memory issues
|
| 184 |
+
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
|
| 185 |
+
|
| 186 |
+
all_classifications = []
|
| 187 |
+
|
| 188 |
+
# Process in batches using lazy loading
|
| 189 |
+
for batch_indices in tqdm(
|
| 190 |
+
partition_all(batch_size, range(len(dataset))),
|
| 191 |
+
total=(len(dataset) + batch_size - 1) // batch_size,
|
| 192 |
+
desc="Classifying images",
|
| 193 |
+
):
|
| 194 |
+
batch_indices = list(batch_indices)
|
| 195 |
+
|
| 196 |
+
# Load only this batch's images
|
| 197 |
+
batch_images = []
|
| 198 |
+
valid_batch_indices = []
|
| 199 |
+
|
| 200 |
+
for idx in batch_indices:
|
| 201 |
+
try:
|
| 202 |
+
image = dataset[idx][image_column]
|
| 203 |
+
batch_images.append(image)
|
| 204 |
+
valid_batch_indices.append(idx)
|
| 205 |
+
except Exception as e:
|
| 206 |
+
logger.warning(f"Skipping image at index {idx}: {e}")
|
| 207 |
+
all_classifications.append(None)
|
| 208 |
+
|
| 209 |
+
if not batch_images:
|
| 210 |
+
continue
|
| 211 |
+
|
| 212 |
+
try:
|
| 213 |
+
# Create messages for just this batch
|
| 214 |
+
batch_messages = [
|
| 215 |
+
create_classification_messages(img, prompt)
|
| 216 |
+
for img in batch_images
|
| 217 |
+
]
|
| 218 |
+
|
| 219 |
+
# Process with vLLM
|
| 220 |
+
outputs = llm.chat(
|
| 221 |
+
messages=batch_messages,
|
| 222 |
+
sampling_params=sampling_params,
|
| 223 |
+
use_tqdm=False, # Already have outer progress bar
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
# Extract classifications
|
| 227 |
+
for output in outputs:
|
| 228 |
+
if output.outputs:
|
| 229 |
+
label = output.outputs[0].text.strip()
|
| 230 |
+
all_classifications.append(label)
|
| 231 |
+
else:
|
| 232 |
+
all_classifications.append(None)
|
| 233 |
+
logger.warning("Empty output for an image")
|
| 234 |
+
|
| 235 |
+
except Exception as e:
|
| 236 |
+
logger.error(f"Error processing batch: {e}")
|
| 237 |
+
# Add None for failed batch
|
| 238 |
+
all_classifications.extend([None] * len(batch_images))
|
| 239 |
+
|
| 240 |
+
# Ensure we have the right number of classifications
|
| 241 |
+
while len(all_classifications) < len(dataset):
|
| 242 |
+
all_classifications.append(None)
|
| 243 |
+
|
| 244 |
+
# Add classifications to dataset
|
| 245 |
+
logger.info("Adding classifications to dataset...")
|
| 246 |
+
dataset = dataset.add_column("label", all_classifications[:len(dataset)])
|
| 247 |
+
|
| 248 |
+
# Push to hub
|
| 249 |
+
logger.info(f"Pushing to {output_dataset}...")
|
| 250 |
+
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
|
| 251 |
+
|
| 252 |
+
# Print summary
|
| 253 |
+
logger.info("Classification complete!")
|
| 254 |
+
logger.info(f"Processed {len(all_classifications)} images")
|
| 255 |
+
logger.info(f"Output dataset: {output_dataset}")
|
| 256 |
+
|
| 257 |
+
# Show distribution of classifications
|
| 258 |
+
label_counts = Counter(all_classifications)
|
| 259 |
+
logger.info("Classification distribution:")
|
| 260 |
+
for label, count in sorted(label_counts.items()):
|
| 261 |
+
if label is not None: # Skip None values in summary
|
| 262 |
+
percentage = (count / len(all_classifications)) * 100 if all_classifications else 0
|
| 263 |
+
logger.info(f" {label}: {count} ({percentage:.1f}%)")
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
if __name__ == "__main__":
|
| 267 |
+
parser = argparse.ArgumentParser(
|
| 268 |
+
description="Classify images using Vision Language Models",
|
| 269 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 270 |
+
epilog="""
|
| 271 |
+
Examples:
|
| 272 |
+
# Basic classification
|
| 273 |
+
uv run vlm-classify.py \\
|
| 274 |
+
username/input-dataset \\
|
| 275 |
+
username/output-dataset \\
|
| 276 |
+
--classes "document,photo,diagram,other"
|
| 277 |
+
|
| 278 |
+
# With custom prompt
|
| 279 |
+
uv run vlm-classify.py \\
|
| 280 |
+
username/input-dataset \\
|
| 281 |
+
username/output-dataset \\
|
| 282 |
+
--classes "index-card,manuscript,other" \\
|
| 283 |
+
--prompt "What type of historical document is this?"
|
| 284 |
+
|
| 285 |
+
# HF Jobs execution
|
| 286 |
+
hf jobs uv run \\
|
| 287 |
+
--flavor a10g \\
|
| 288 |
+
https://huggingface.co/datasets/uv-scripts/vllm/raw/main/vlm-classify.py \\
|
| 289 |
+
username/input-dataset \\
|
| 290 |
+
username/output-dataset \\
|
| 291 |
+
--classes "title-page,content,index,other"
|
| 292 |
+
""",
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
parser.add_argument(
|
| 296 |
+
"input_dataset",
|
| 297 |
+
help="Input dataset ID on Hugging Face Hub",
|
| 298 |
+
)
|
| 299 |
+
parser.add_argument(
|
| 300 |
+
"output_dataset",
|
| 301 |
+
help="Output dataset ID on Hugging Face Hub",
|
| 302 |
+
)
|
| 303 |
+
parser.add_argument(
|
| 304 |
+
"--classes",
|
| 305 |
+
required=True,
|
| 306 |
+
help='Comma-separated list of classes (e.g., "cat,dog,other")',
|
| 307 |
+
)
|
| 308 |
+
parser.add_argument(
|
| 309 |
+
"--prompt",
|
| 310 |
+
default=None,
|
| 311 |
+
help="Custom classification prompt (default: auto-generated)",
|
| 312 |
+
)
|
| 313 |
+
parser.add_argument(
|
| 314 |
+
"--image-column",
|
| 315 |
+
default="image",
|
| 316 |
+
help="Column name containing images (default: image)",
|
| 317 |
+
)
|
| 318 |
+
parser.add_argument(
|
| 319 |
+
"--model",
|
| 320 |
+
default="Qwen/Qwen2-VL-7B-Instruct",
|
| 321 |
+
help="Vision Language Model to use (default: Qwen/Qwen2-VL-7B-Instruct)",
|
| 322 |
+
)
|
| 323 |
+
parser.add_argument(
|
| 324 |
+
"--batch-size",
|
| 325 |
+
type=int,
|
| 326 |
+
default=8,
|
| 327 |
+
help="Batch size for inference (default: 8)",
|
| 328 |
+
)
|
| 329 |
+
parser.add_argument(
|
| 330 |
+
"--max-samples",
|
| 331 |
+
type=int,
|
| 332 |
+
default=None,
|
| 333 |
+
help="Maximum number of samples to process (for testing)",
|
| 334 |
+
)
|
| 335 |
+
parser.add_argument(
|
| 336 |
+
"--gpu-memory-utilization",
|
| 337 |
+
type=float,
|
| 338 |
+
default=0.9,
|
| 339 |
+
help="GPU memory utilization (default: 0.9)",
|
| 340 |
+
)
|
| 341 |
+
parser.add_argument(
|
| 342 |
+
"--max-model-len",
|
| 343 |
+
type=int,
|
| 344 |
+
default=None,
|
| 345 |
+
help="Maximum model context length",
|
| 346 |
+
)
|
| 347 |
+
parser.add_argument(
|
| 348 |
+
"--tensor-parallel-size",
|
| 349 |
+
type=int,
|
| 350 |
+
default=None,
|
| 351 |
+
help="Number of GPUs for tensor parallelism (default: auto-detect)",
|
| 352 |
+
)
|
| 353 |
+
parser.add_argument(
|
| 354 |
+
"--split",
|
| 355 |
+
default="train",
|
| 356 |
+
help="Dataset split to use (default: train)",
|
| 357 |
+
)
|
| 358 |
+
parser.add_argument(
|
| 359 |
+
"--hf-token",
|
| 360 |
+
default=None,
|
| 361 |
+
help="Hugging Face API token (or set HF_TOKEN env var)",
|
| 362 |
+
)
|
| 363 |
+
parser.add_argument(
|
| 364 |
+
"--private",
|
| 365 |
+
action="store_true",
|
| 366 |
+
help="Make output dataset private",
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
args = parser.parse_args()
|
| 370 |
+
|
| 371 |
+
# Show example command if no arguments
|
| 372 |
+
if len(sys.argv) == 1:
|
| 373 |
+
parser.print_help()
|
| 374 |
+
print("\n" + "="*60)
|
| 375 |
+
print("Example HF Jobs command:")
|
| 376 |
+
print("="*60)
|
| 377 |
+
print("""
|
| 378 |
+
hf jobs uv run \\
|
| 379 |
+
--flavor a10g \\
|
| 380 |
+
-e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\
|
| 381 |
+
https://huggingface.co/datasets/uv-scripts/vllm/raw/main/vlm-classify.py \\
|
| 382 |
+
davanstrien/sloane-index-cards \\
|
| 383 |
+
username/classified-cards \\
|
| 384 |
+
--classes "index-card,manuscript,title-page,other" \\
|
| 385 |
+
--max-samples 100
|
| 386 |
+
""")
|
| 387 |
+
sys.exit(0)
|
| 388 |
+
|
| 389 |
+
main(
|
| 390 |
+
input_dataset=args.input_dataset,
|
| 391 |
+
output_dataset=args.output_dataset,
|
| 392 |
+
classes=args.classes,
|
| 393 |
+
prompt=args.prompt,
|
| 394 |
+
image_column=args.image_column,
|
| 395 |
+
model=args.model,
|
| 396 |
+
batch_size=args.batch_size,
|
| 397 |
+
max_samples=args.max_samples,
|
| 398 |
+
gpu_memory_utilization=args.gpu_memory_utilization,
|
| 399 |
+
max_model_len=args.max_model_len,
|
| 400 |
+
tensor_parallel_size=args.tensor_parallel_size,
|
| 401 |
+
split=args.split,
|
| 402 |
+
hf_token=args.hf_token,
|
| 403 |
+
private=args.private,
|
| 404 |
+
)
|