import os import sys import json import glob import argparse from datasets import load_dataset, concatenate_datasets import pandas as pd import shutil import chardet import ast import transformers # Add parent directory to Python path sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Add current directory to Python path sys.path.append(os.path.dirname(os.path.abspath(__file__))) from eval_agent.system_prompts import sys_prompts # vbench_dimention_df = pd.read_csv("eval_agent/vbench_dimension_scores.tsv", sep="\t") t2i_dimention_df = pd.read_csv("eval_agent/t2i_comp_dimension_scores.tsv", sep="\t") # Templates for different components alpaca_template = { "instruction": "{instruction}", "input": "{input}", "output": "{output}", "system": "{system}" } thinking_template = "{thinking}" tool_template = "{tool}" observation_template = "{information}" analysis_template = "{analysis}" summary_template = "{summary}" # Global counter for tracking data global_counter = 0 length_counter = 0 def format_subaspect(sub_aspect): """Format sub-aspect for output.""" import random template_list = [ "I will evaluate the model's sub-aspect: {sub_aspect}.", "I will focus on the {sub_aspect} sub-aspect of the model.", "Let me assess the {sub_aspect} sub-aspect of this model.", "I need to examine the model's {sub_aspect} sub-aspect.", "Now I will analyze the {sub_aspect} sub-aspect dimension.", "I'll investigate the {sub_aspect} sub-aspect quality of the model.", "Time to evaluate the {sub_aspect} sub-aspect performance.", "I should check the model's {sub_aspect} sub-aspect capabilities." ] selected_template = random.choice(template_list) return selected_template.format(sub_aspect=sub_aspect) def format_summary(analysis, summary): """Format summary for output.""" return f"Analysis: {analysis}\nSummary: {summary}" def load_data(file_path): """Load JSON data from a file.""" with open(file_path, "r", encoding="utf-8") as f: return json.load(f) def format_template(template, **kwargs): """Format a template with provided values.""" if isinstance(template, dict): result = {} for key, value in template.items(): if isinstance(value, str): result[key] = value.format(**kwargs) else: result[key] = value return result return template.format(**kwargs) def extract_obs(tool_name, obs): """Extract observation information for a tool.""" return f"Observation: {obs}" def check_data(data): """Check if data is valid.""" if len(data["cot"]) > 8: return False if data["cot"][-1]["answer"] != data["ground_truth"]: return False return True # def format_eval_results(eval_results: dict) -> list: # """Format eval results for output.""" # score = eval_results['score'][0] # video_results_list = eval_results['score'][1] # list of dict # # remove the video path # for video_result in video_results_list: # video_result.pop('video_path') # return score, video_results_list # format the reference table def format_dimension_as_string(df, dimension_name): row = df.loc[df['Dimension'] == dimension_name] if row.empty: return f"No data found for dimension: {dimension_name}" formatted_string = ( f"{row['Dimension'].values[0]}: " f"Very High -> {row['Very High'].values[0]}, " f"High -> {row['High'].values[0]}, " f"Moderate -> {row['Moderate'].values[0]}, " f"Low -> {row['Low'].values[0]}, " f"Very Low -> {row['Very Low'].values[0]}" ) return formatted_string def format_eval_results(results, reference_table): tool_name = results["Tool"] average_score = results["eval_results"]["score"][0] video_results = results["eval_results"]["score"][1] # More concise and structured format for SFT output = f"Scoring Reference Table of '{tool_name}': {reference_table}\n\n" output += f"Results:\n" output += f"- Overall score: {average_score:.4f}\n" output += f"- Per-prompt scores:\n" for video in video_results: prompt = video["prompt"] score = video["image_results"] output += f" • \"{prompt}\": {score:.4f}\n" return output # Main function to convert the data to the Alpaca format def convert_to_alpaca(json_path, output_dir, return_data=False): """Convert data to Alpaca format for training.""" global global_counter data_list = [] # Process each file with open(json_path, "r", encoding="utf-8") as in_f: data = json.load(in_f) # remove the last element data.pop() # data["ID"] = global_counter ops = [] obs = [] # Generate the history for i in range(1, len(data)): # Prepare the output try: if i == len(data) - 1: # last step op = f"{thinking_template.format(thinking=data[i]['Thought'])}{summary_template.format(summary=format_summary(data[i]['Analysis'], data[i]['Summary']))}" else: op = f"{thinking_template.format(thinking=data[i]['Thought'] + ' ' + format_subaspect(data[i]['Sub-aspect']))}{tool_template.format(tool=data[i]['Tool'])}" # only n-1 steps have observation # obs.append(observation_template.format(information=extract_obs(data["cot"][i]["tool"]["name"], data["cot"][i]["observation"]))) # score, video_results_list = format_eval_results(data[i]['eval_results']) # obs.append(observation_template.format(info0=score, info1=video_results_list)) # Current observation is the eval_results reference_table = format_dimension_as_string(t2i_dimention_df, data[i]['Tool']) obs.append(observation_template.format(information=format_eval_results(data[i], reference_table))) except Exception as e: print(f"Error in processing data {json_path} at step {i}: {e}") continue ops.append(op) # Build history for this step history = [] for j in range(1, i): # Start from 1 since we process from step 1 if j == 1: traj = [ data[0], ops[j-1] # ops is 0-indexed but we start processing from step 1 ] else: traj = [ obs[j-2], # obs is built as we go ops[j-1] ] history.append(traj) # Convert the data to the Alpaca format at the n-th step if i == 1: # First step after initial instruction data_n = format_template(alpaca_template, **{ "instruction": data[0], "input": "", "output": op, "system": sys_prompts["eval-agent-t2i-training-sys"] + sys_prompts["eval-agent-format-sys"] }) else: data_n = format_template(alpaca_template, **{ "instruction": obs[i-2], # Previous observation "input": "", "output": op, "system": sys_prompts["eval-agent-t2i-training-sys"] + sys_prompts["eval-agent-format-sys"] }) data_n["history"] = history # # filter the tokens > 8096 # tokenizer = transformers.AutoTokenizer.from_pretrained('Ego-R1/qwen-sft-epoch3-len16192-20250511-3b-inst') # tokens = tokenizer(f"{data_n['instruction']} {data_n['output']} {data_n['system']} {str(data_n['history'])}") # if len(tokens['input_ids']) > 8096: # print(f"Skipping data with tokens > 8096: {data['ID']}") # continue data_list.append(data_n) global_counter += 1 if return_data: return data_list print(f"Size of the sft dataset: {len(data_list)}") # Create output directory if it doesn't exist os.makedirs(output_dir, exist_ok=True) # Save the processed data with open(os.path.join(output_dir, "processed_data.json"), "w", encoding="utf-8") as out_f: json.dump(data_list, out_f, ensure_ascii=False, indent=4) def arg_parse(): """Parse command line arguments.""" parser = argparse.ArgumentParser(description="Process EgoLife data for training") parser.add_argument("--home_dir", type=str, default="/home/data2/sltian/code/evaluation_agent_dev") parser.add_argument("--data_dir", type=str, default="ea-data") # for test set, the data_dir should be "/home/data2/sltian/code/Ego-R1_dev/egor1-bench/QA-egolife/benchmark/benchmark_shuffle_new" parser.add_argument("--output_dir", type=str, default=None) parser.add_argument("--format", type=str, choices=["alpaca", "glaive"], default="alpaca") return parser.parse_args() def main(): """Main function to process data.""" args = arg_parse() if args.output_dir is None: import datetime args.output_dir = os.path.join("data", f"postprocess_{datetime.datetime.now().strftime('%Y%m%d')}") # Get all JSON files from the preprocess directory preprocess_dir = "/home/data2/sltian/code/evaluation_agent_dev/data/preprocess-t2i" json_files = glob.glob(os.path.join(preprocess_dir, "*.json")) # Filter out mapping files and only keep chat history files chat_files = [f for f in json_files if not f.endswith("mapping.txt") and not f.endswith("summary_by_model.txt") and f.endswith(".json")] print(f"Found {len(chat_files)} chat history files to process") # Create a combined dataset from all files all_data = [] for i, json_path in enumerate(chat_files): print(f"Processing file {i+1}/{len(chat_files)}: {os.path.basename(json_path)}") try: file_data = convert_to_alpaca(json_path, args.output_dir, return_data=True) all_data.extend(file_data) except Exception as e: print(f"Error processing {json_path}: {e}") continue print(f"\nTotal training examples created: {len(all_data)}") # Save the combined dataset os.makedirs(args.output_dir, exist_ok=True) output_path = os.path.join(args.output_dir, "evaluation_agent_cot_dataset_t2i.json") with open(output_path, "w", encoding="utf-8") as f: json.dump(all_data, f, ensure_ascii=False, indent=2) print(f"Combined dataset saved to: {output_path}") if __name__ == "__main__": main()