File size: 11,117 Bytes
9f3bc09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os
import sys
import json
import glob
import argparse
from datasets import load_dataset, concatenate_datasets
import pandas as pd
import shutil
import chardet
import ast
import transformers
# Add parent directory to Python path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from eval_agent.system_prompts import sys_prompts
vbench_dimention_df = pd.read_csv("eval_agent/vbench_dimension_scores.tsv", sep="\t")
t2i_dimention_df = pd.read_csv("eval_agent/t2i_dimension_scores.tsv", sep="\t")
# Templates for different components
alpaca_template = {
"instruction": "{instruction}",
"input": "{input}",
"output": "{output}",
"system": "{system}"
}
thinking_template = "<think>{thinking}</think>"
tool_template = "<tool>{tool}</tool>"
observation_template = "<information>{information}</information>"
analysis_template = "<analysis>{analysis}</analysis>"
summary_template = "<summary>{summary}</summary>"
# Global counter for tracking data
global_counter = 0
length_counter = 0
def format_subaspect(sub_aspect):
"""Format sub-aspect for output."""
import random
template_list = [
"I will evaluate the model's sub-aspect: {sub_aspect}.",
"I will focus on the {sub_aspect} sub-aspect of the model.",
"Let me assess the {sub_aspect} sub-aspect of this model.",
"I need to examine the model's {sub_aspect} sub-aspect.",
"Now I will analyze the {sub_aspect} sub-aspect dimension.",
"I'll investigate the {sub_aspect} sub-aspect quality of the model.",
"Time to evaluate the {sub_aspect} sub-aspect performance.",
"I should check the model's {sub_aspect} sub-aspect capabilities."
]
selected_template = random.choice(template_list)
return selected_template.format(sub_aspect=sub_aspect)
def format_summary(analysis, summary):
"""Format summary for output."""
return f"Analysis: {analysis}\nSummary: {summary}"
def load_data(file_path):
"""Load JSON data from a file."""
with open(file_path, "r", encoding="utf-8") as f:
return json.load(f)
def format_template(template, **kwargs):
"""Format a template with provided values."""
if isinstance(template, dict):
result = {}
for key, value in template.items():
if isinstance(value, str):
result[key] = value.format(**kwargs)
else:
result[key] = value
return result
return template.format(**kwargs)
def extract_obs(tool_name, obs):
"""Extract observation information for a tool."""
return f"Observation: {obs}"
def check_data(data):
"""Check if data is valid."""
if len(data["cot"]) > 8:
return False
if data["cot"][-1]["answer"] != data["ground_truth"]:
return False
return True
# def format_eval_results(eval_results: dict) -> list:
# """Format eval results for output."""
# score = eval_results['score'][0]
# video_results_list = eval_results['score'][1] # list of dict
# # remove the video path
# for video_result in video_results_list:
# video_result.pop('video_path')
# return score, video_results_list
# format the reference table
def format_dimension_as_string(df, dimension_name):
row = df.loc[df['Dimension'] == dimension_name]
if row.empty:
return f"No data found for dimension: {dimension_name}"
formatted_string = (
f"{row['Dimension'].values[0]}: "
f"Very High -> {row['Very High'].values[0]}, "
f"High -> {row['High'].values[0]}, "
f"Moderate -> {row['Moderate'].values[0]}, "
f"Low -> {row['Low'].values[0]}, "
f"Very Low -> {row['Very Low'].values[0]}"
)
return formatted_string
def format_eval_results(results, reference_table):
tool_name = results["Tool"]
average_score = results["eval_results"]["score"][0]
video_results = results["eval_results"]["score"][1]
# More concise and structured format for SFT
output = f"Scoring Reference Table of '{tool_name}': {reference_table}\n\n"
output += f"Results:\n"
output += f"- Overall score: {average_score:.4f}\n"
output += f"- Per-prompt scores:\n"
for video in video_results:
prompt = video["prompt"]
score = video["video_results"]
output += f" • \"{prompt}\": {score:.4f}\n"
return output
# Main function to convert the data to the Alpaca format
def convert_to_alpaca(json_path, output_dir, return_data=False):
"""Convert data to Alpaca format for training."""
global global_counter
data_list = []
# Process each file
with open(json_path, "r", encoding="utf-8") as in_f:
data = json.load(in_f)
# remove the last element
data.pop()
# data["ID"] = global_counter
ops = []
obs = []
# Generate the history
for i in range(1, len(data)):
# Prepare the output
try:
if i == len(data) - 1: # last step
op = f"{thinking_template.format(thinking=data[i]['Thought'])}{summary_template.format(summary=format_summary(data[i]['Analysis'], data[i]['Summary']))}"
else:
op = f"{thinking_template.format(thinking=data[i]['Thought'] + ' ' + format_subaspect(data[i]['Sub-aspect']))}{tool_template.format(tool=data[i]['Tool'])}"
# only n-1 steps have observation
# obs.append(observation_template.format(information=extract_obs(data["cot"][i]["tool"]["name"], data["cot"][i]["observation"])))
# score, video_results_list = format_eval_results(data[i]['eval_results'])
# obs.append(observation_template.format(info0=score, info1=video_results_list)) # Current observation is the eval_results
reference_table = format_dimension_as_string(vbench_dimention_df, data[i]['Tool'])
obs.append(observation_template.format(information=format_eval_results(data[i], reference_table)))
except Exception as e:
print(f"Error in processing data {json_path} at step {i}: {e}")
continue
ops.append(op)
# Build history for this step
history = []
for j in range(1, i): # Start from 1 since we process from step 1
if j == 1:
traj = [
data[0],
ops[j-1] # ops is 0-indexed but we start processing from step 1
]
else:
traj = [
obs[j-2], # obs is built as we go
ops[j-1]
]
history.append(traj)
# Convert the data to the Alpaca format at the n-th step
if i == 1: # First step after initial instruction
data_n = format_template(alpaca_template, **{
"instruction": data[0],
"input": "",
"output": op,
"system": sys_prompts["eval-agent-vbench-training-sys_v1"] + sys_prompts["eval-agent-format-sys"]
})
else:
data_n = format_template(alpaca_template, **{
"instruction": obs[i-2], # Previous observation
"input": "",
"output": op,
"system": sys_prompts["eval-agent-vbench-training-sys_v1"] + sys_prompts["eval-agent-format-sys"]
})
data_n["history"] = history
# # filter the tokens > 8096
# tokenizer = transformers.AutoTokenizer.from_pretrained('Ego-R1/qwen-sft-epoch3-len16192-20250511-3b-inst')
# tokens = tokenizer(f"{data_n['instruction']} {data_n['output']} {data_n['system']} {str(data_n['history'])}")
# if len(tokens['input_ids']) > 8096:
# print(f"Skipping data with tokens > 8096: {data['ID']}")
# continue
data_list.append(data_n)
global_counter += 1
if return_data:
return data_list
print(f"Size of the sft dataset: {len(data_list)}")
# Create output directory if it doesn't exist
os.makedirs(output_dir, exist_ok=True)
# Save the processed data
with open(os.path.join(output_dir, "processed_data.json"), "w", encoding="utf-8") as out_f:
json.dump(data_list, out_f, ensure_ascii=False, indent=4)
def arg_parse():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(description="Process EgoLife data for training")
parser.add_argument("--home_dir", type=str, default="/home/data2/sltian/code/evaluation_agent_dev")
parser.add_argument("--data_dir", type=str, default="ea-data") # for test set, the data_dir should be "/home/data2/sltian/code/Ego-R1_dev/egor1-bench/QA-egolife/benchmark/benchmark_shuffle_new"
parser.add_argument("--output_dir", type=str, default=None)
parser.add_argument("--format", type=str, choices=["alpaca", "glaive"], default="alpaca")
return parser.parse_args()
def main():
"""Main function to process data."""
args = arg_parse()
if args.output_dir is None:
import datetime
args.output_dir = os.path.join("data", f"postprocess_{datetime.datetime.now().strftime('%Y%m%d')}")
# Get all JSON files from the preprocess directory
preprocess_dir = "/home/data2/sltian/code/evaluation_agent_dev/data/preprocess"
json_files = glob.glob(os.path.join(preprocess_dir, "*.json"))
# Filter out mapping files and only keep chat history files
chat_files = [f for f in json_files if not f.endswith("mapping.txt") and not f.endswith("summary_by_model.txt") and f.endswith(".json")]
print(f"Found {len(chat_files)} chat history files to process")
# Create a combined dataset from all files
all_data = []
for i, json_path in enumerate(chat_files):
print(f"Processing file {i+1}/{len(chat_files)}: {os.path.basename(json_path)}")
try:
file_data = convert_to_alpaca(json_path, args.output_dir, return_data=True)
all_data.extend(file_data)
except Exception as e:
print(f"Error processing {json_path}: {e}")
continue
print(f"\nTotal training examples created: {len(all_data)}")
# Save the combined dataset
os.makedirs(args.output_dir, exist_ok=True)
output_path = os.path.join(args.output_dir, "evaluation_agent_cot_dataset.json")
with open(output_path, "w", encoding="utf-8") as f:
json.dump(all_data, f, ensure_ascii=False, indent=2)
print(f"Combined dataset saved to: {output_path}")
if __name__ == "__main__":
main() |