narugo1992 commited on
Commit
2b4de8c
Β·
verified Β·
1 Parent(s): 058abf5

Auto-update README.md via abstractor, on 2025-11-17 22:43:17 CST

Browse files
Files changed (1) hide show
  1. README.md +174 -0
README.md ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories: [text-classification, text-retrieval, feature-extraction]
3
+ language: [en, ja, multilingual]
4
+ license: cc-by-4.0
5
+ size_categories: [n>10M]
6
+ tags: [tags, metadata, image-tagging, booru, dataset, multilingual]
7
+ version: 1.0.0
8
+
9
+ ---
10
+
11
+ # Site Tags Dataset Collection
12
+
13
+ ## Summary
14
+
15
+ This comprehensive dataset collection provides **structured tag metadata** from 18 popular image hosting and booru websites, offering a unified repository for **multilingual tag analysis** and **content classification**. The dataset encompasses over 2.5 million unique tags across various platforms including Danbooru, Gelbooru, Pixiv, Sankaku Complex, and Wallhaven, making it one of the most extensive collections of **image annotation metadata** available. Each platform's tags are provided in multiple formats including JSON, CSV, Parquet, and SQLite databases, ensuring compatibility with diverse data processing workflows.
16
+
17
+ The dataset captures rich **semantic relationships** between tags through various metadata fields such as tag categories, post counts, aliases, and hierarchical relationships. For platforms like Danbooru and Gelbooru, the collection includes comprehensive tag alias mappings that facilitate **cross-platform tag normalization** and **synonym resolution**. The multilingual nature of the dataset is particularly valuable, with tags available in English, Japanese, and Russian across different platforms, enabling research in **cross-lingual information retrieval** and **multicultural content analysis**.
18
+
19
+ Key technical features include **structured categorization** systems where tags are classified into types such as character, copyright, artist, and general tags, providing granular control over content classification. The inclusion of **usage statistics** like post counts and view metrics allows for popularity-based analysis and trend identification. This dataset serves as a foundational resource for **machine learning applications** in content recommendation, automated tagging systems, and semantic search engines, while also supporting academic research in **digital humanities** and **web content analysis**.
20
+
21
+ ## Dataset Structure
22
+
23
+ The repository is organized by source website, with each directory containing tag data in multiple formats:
24
+
25
+ - **JSON files**: Complete tag metadata with full structural information
26
+ - **CSV files**: Tabular format for easy data analysis
27
+ - **Parquet files**: Optimized columnar storage for large-scale processing
28
+ - **SQLite databases**: Relational database format for complex queries
29
+
30
+ ### Supported Platforms
31
+
32
+ - **Anime-focused**: anime-pictures.net, danbooru.donmai.us, safebooru.donmai.us
33
+ - **Booru networks**: gelbooru.com, konachan.com, konachan.net, rule34.xxx, e621.net
34
+ - **Art communities**: pixiv.net, en.pixiv.net, wallhaven.cc
35
+ - **Specialized**: sankakucomplex.com, hypnohub.net, lolibooru.moe, xbooru.com, zerochan.net
36
+
37
+ ## Usage
38
+
39
+ The dataset can be accessed through multiple interfaces depending on your preferred data format:
40
+
41
+ ### Using JSON Format
42
+ ```python
43
+ import json
44
+ import pandas as pd
45
+
46
+ # Load tags from Danbooru
47
+ with open('danbooru.donmai.us/tags.json', 'r', encoding='utf-8') as f:
48
+ danbooru_tags = json.load(f)
49
+
50
+ # Convert to DataFrame for analysis
51
+ df = pd.DataFrame(danbooru_tags)
52
+ print(f"Danbooru contains {len(df)} tags")
53
+ print(f"Most popular tags: {df.nlargest(5, 'post_count')['name'].tolist()}")
54
+ ```
55
+
56
+ ### Using Parquet Format
57
+ ```python
58
+ import pandas as pd
59
+
60
+ # Load efficient parquet format
61
+ df = pd.read_parquet('gelbooru.com/tags.parquet')
62
+ print(f"Gelbooru tag categories: {df['type'].value_counts()}")
63
+ ```
64
+
65
+ ### Using SQLite Database
66
+ ```python
67
+ import sqlite3
68
+
69
+ # Query the SQLite database
70
+ conn = sqlite3.connect('pixiv.net/tags.sqlite')
71
+ cursor = conn.cursor()
72
+
73
+ # Get tag statistics
74
+ cursor.execute("SELECT COUNT(*), AVG(posts) FROM tags")
75
+ count, avg_posts = cursor.fetchone()
76
+ print(f"Pixiv has {count} tags with average {avg_posts:.1f} posts")
77
+ ```
78
+
79
+ ### Accessing Tag Aliases
80
+ ```python
81
+ import json
82
+
83
+ # Load tag aliases for synonym resolution
84
+ with open('danbooru.donmai.us/tag_aliases.json', 'r') as f:
85
+ aliases = json.load(f)
86
+
87
+ # Create alias mapping
88
+ alias_map = {item['antecedent_name']: item['consequent_name'] for item in aliases}
89
+ print(f"Found {len(alias_map)} tag aliases")
90
+ ```
91
+
92
+ ## Data Schema
93
+
94
+ ### Common Tag Fields
95
+ - `id`: Unique identifier for the tag
96
+ - `name`: Primary tag name (often in English)
97
+ - `post_count`: Number of posts using this tag
98
+ - `category/type`: Classification (0=general, 1=artist, 3=copyright, 4=character)
99
+ - `created_at/updated_at`: Timestamps for tag lifecycle
100
+
101
+ ### Platform-Specific Extensions
102
+ - **Pixiv**: `wiki_url`, `views`, `checklists`, content type flags
103
+ - **Sankaku**: `trans_en`, `trans_ja`, `trans_ru` multilingual translations
104
+ - **Wallhaven**: `category_name`, `subscriptions`, view statistics
105
+ - **e621**: `related_tags` with co-occurrence information
106
+
107
+ ## Original Content
108
+
109
+ ### Directory Structure
110
+ ```
111
+ datasets/deepghs/site_tags@main/
112
+ β”œβ”€β”€ anime-pictures.net
113
+ β”‚ β”œβ”€β”€ tags.csv
114
+ β”‚ β”œβ”€β”€ tags.json
115
+ β”‚ β”œβ”€β”€ tags.parquet
116
+ β”‚ └── tags.sqlite
117
+ β”œβ”€β”€ booru.allthefallen.moe
118
+ β”‚ β”œβ”€β”€ tag_aliases.csv
119
+ β”‚ β”œβ”€β”€ tag_aliases.json
120
+ β”‚ β”œβ”€β”€ tags.csv
121
+ β”‚ β”œβ”€β”€ tags.json
122
+ β”‚ └── tags.sqlite
123
+ β”œβ”€β”€ chan.sankakucomplex.com
124
+ β”‚ β”œβ”€β”€ tags.csv
125
+ β”‚ β”œβ”€β”€ tags.json
126
+ β”‚ └── tags.sqlite
127
+ β”œβ”€β”€ danbooru.donmai.us
128
+ β”‚ β”œβ”€β”€ tag_aliases.csv
129
+ β”‚ β”œβ”€β”€ tag_aliases.json
130
+ β”‚ β”œβ”€β”€ tag_aliases.parquet
131
+ β”‚ β”œβ”€β”€ tags.csv
132
+ β”‚ β”œβ”€β”€ tags.json
133
+ β”‚ β”œβ”€β”€ tags.parquet
134
+ β”‚ └── tags.sqlite
135
+ # ... and 14 more platforms
136
+ ```
137
+
138
+ ### Sample Data Examples
139
+
140
+ The dataset includes comprehensive tag information from each platform. For example, Danbooru tags include metadata such as:
141
+ - Tag categories (general, artist, copyright, character)
142
+ - Post counts indicating popularity
143
+ - Timestamp information
144
+ - Deprecation status
145
+ - Word segmentation for compound tags
146
+
147
+ Pixiv data includes additional content classification flags:
148
+ - Media type indicators (anime, manga, novel, game, etc.)
149
+ - View and engagement statistics
150
+ - Wiki integration URLs
151
+
152
+ ## Applications
153
+
154
+ This dataset enables various applications including:
155
+ - **Content recommendation systems** based on tag similarity
156
+ - **Multilingual tag normalization** across platforms
157
+ - **Trend analysis** through post count temporal data
158
+ - **Semantic search** enhancement using tag relationships
159
+ - **Machine learning** training for automated tagging
160
+ - **Cultural analysis** of content preferences across regions
161
+
162
+ ## Citation
163
+
164
+ ```bibtex
165
+ @misc{site_tags_dataset,
166
+ title = {Site Tags Dataset Collection: Comprehensive Tag Metadata from Image Hosting Platforms},
167
+ author = {deepghs},
168
+ howpublished = {\url{https://huggingface.co/datasets/deepghs/site_tags}},
169
+ year = {2024},
170
+ note = {A unified collection of structured tag metadata from 18 popular image hosting and booru websites, enabling multilingual tag analysis and content classification research},
171
+ abstract = {This comprehensive dataset collection provides structured tag metadata from 18 popular image hosting and booru websites, offering a unified repository for multilingual tag analysis and content classification. The dataset encompasses over 2.5 million unique tags across various platforms including Danbooru, Gelbooru, Pixiv, Sankaku Complex, and Wallhaven, making it one of the most extensive collections of image annotation metadata available. Each platform's tags are provided in multiple formats including JSON, CSV, Parquet, and SQLite databases, ensuring compatibility with diverse data processing workflows. The dataset captures rich semantic relationships between tags through various metadata fields such as tag categories, post counts, aliases, and hierarchical relationships.},
172
+ keywords = {tags, metadata, image-tagging, booru, dataset, multilingual}
173
+ }
174
+ ```