File size: 1,496 Bytes
9de4d5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
tags:
- object-detection
- rf-detr
- commonforms
datasets:
- jbarrow/CommonForms
---
# RF-DETR Fine-tuned on CommonForms
This model is an RF-DETR (small) fine-tuned on the [CommonForms](jbarrow/CommonForms) dataset for form field detection.
## Model Details
- **Model Type:** RF-DETR small
- **Dataset:** jbarrow/CommonForms
- **Classes:** 3
- **Epochs:** 1
- **Batch Size:** 4 (grad_accum: 4)
## Classes
[
{
"id": 0,
"name": "class_0",
"supercategory": "form_element"
},
{
"id": 1,
"name": "class_1",
"supercategory": "form_element"
},
{
"id": 2,
"name": "class_2",
"supercategory": "form_element"
}
]
## Usage
```python
import torch
from PIL import Image
# Load model
model_path = "path/to/rfdetr_model.pt"
# Note: You'll need the rfdetr library installed
from rfdetr import RFDETRSmall
model = RFDETRSmall()
model.load_state_dict(torch.load(model_path))
model.eval()
# Run inference
image = Image.open("form.jpg")
predictions = model.predict(image)
print(predictions)
```
## Training Details
- Learning Rate: 0.0001
- Effective Batch Size: 16
- Dataset: Trained on CommonForms (form field detection)
## Metrics
(Add your evaluation metrics here after running evaluation)
## Citation
```bibtex
@misc{rfdetr-commonforms,
author = {Your Name},
title = {RF-DETR Fine-tuned on CommonForms},
year = {2024},
publisher = {HuggingFace},
howpublished = {\url{https://huggingface.co/andrewluo/rfdetr-commonforms-test}}
}
```
|