File size: 1,496 Bytes
9de4d5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
tags:
- object-detection
- rf-detr
- commonforms
datasets:
- jbarrow/CommonForms
---

# RF-DETR Fine-tuned on CommonForms

This model is an RF-DETR (small) fine-tuned on the [CommonForms](jbarrow/CommonForms) dataset for form field detection.

## Model Details

- **Model Type:** RF-DETR small
- **Dataset:** jbarrow/CommonForms
- **Classes:** 3
- **Epochs:** 1
- **Batch Size:** 4 (grad_accum: 4)

## Classes

[
  {
    "id": 0,
    "name": "class_0",
    "supercategory": "form_element"
  },
  {
    "id": 1,
    "name": "class_1",
    "supercategory": "form_element"
  },
  {
    "id": 2,
    "name": "class_2",
    "supercategory": "form_element"
  }
]

## Usage

```python
import torch
from PIL import Image

# Load model
model_path = "path/to/rfdetr_model.pt"
# Note: You'll need the rfdetr library installed
from rfdetr import RFDETRSmall

model = RFDETRSmall()
model.load_state_dict(torch.load(model_path))
model.eval()

# Run inference
image = Image.open("form.jpg")
predictions = model.predict(image)
print(predictions)
```

## Training Details

- Learning Rate: 0.0001
- Effective Batch Size: 16
- Dataset: Trained on CommonForms (form field detection)

## Metrics

(Add your evaluation metrics here after running evaluation)

## Citation

```bibtex
@misc{rfdetr-commonforms,
  author = {Your Name},
  title = {RF-DETR Fine-tuned on CommonForms},
  year = {2024},
  publisher = {HuggingFace},
  howpublished = {\url{https://huggingface.co/andrewluo/rfdetr-commonforms-test}}
}
```