File size: 16,421 Bytes
8b28006 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
from dataclasses import dataclass, field
from functools import lru_cache
from typing import Optional, Union
from transformers import AutoTokenizer
from transformers.tokenization_utils import PreTrainedTokenizer
# Source: https://github.com/openai/gpt-2/blob/master/src/encoder.py#L9
# Also implemented in https://docs.rs/tokenizers/latest/src/tokenizers/pre_tokenizers/byte_level.rs.html#13-39
_CHARS_TO_BYTES = {
"Ā": 0, "ā": 1, "Ă": 2, "ă": 3, "Ą": 4, "ą": 5, "Ć": 6, "ć": 7, "Ĉ": 8,
"ĉ": 9, "Ċ": 10, "ċ": 11, "Č": 12, "č": 13, "Ď": 14, "ď": 15, "Đ": 16,
"đ": 17, "Ē": 18, "ē": 19, "Ĕ": 20, "ĕ": 21, "Ė": 22, "ė": 23, "Ę": 24,
"ę": 25, "Ě": 26, "ě": 27, "Ĝ": 28, "ĝ": 29, "Ğ": 30, "ğ": 31, "Ġ": 32,
"!": 33, '"': 34, "#": 35, "$": 36, "%": 37, "&": 38, "'": 39, "(": 40,
")": 41, "*": 42, "+": 43, ",": 44, "-": 45, ".": 46, "/": 47, "0": 48,
"1": 49, "2": 50, "3": 51, "4": 52, "5": 53, "6": 54, "7": 55, "8": 56,
"9": 57, ":": 58, ";": 59, "<": 60, "=": 61, ">": 62, "?": 63, "@": 64,
"A": 65, "B": 66, "C": 67, "D": 68, "E": 69, "F": 70, "G": 71, "H": 72,
"I": 73, "J": 74, "K": 75, "L": 76, "M": 77, "N": 78, "O": 79, "P": 80,
"Q": 81, "R": 82, "S": 83, "T": 84, "U": 85, "V": 86, "W": 87, "X": 88,
"Y": 89, "Z": 90, "[": 91, "\\": 92, "]": 93, "^": 94, "_": 95, "`": 96,
"a": 97, "b": 98, "c": 99, "d": 100, "e": 101, "f": 102, "g": 103,
"h": 104, "i": 105, "j": 106, "k": 107, "l": 108, "m": 109, "n": 110,
"o": 111, "p": 112, "q": 113, "r": 114, "s": 115, "t": 116, "u": 117,
"v": 118, "w": 119, "x": 120, "y": 121, "z": 122, "{": 123, "|": 124,
"}": 125, "~": 126, "ġ": 127, "Ģ": 128, "ģ": 129, "Ĥ": 130, "ĥ": 131,
"Ħ": 132, "ħ": 133, "Ĩ": 134, "ĩ": 135, "Ī": 136, "ī": 137, "Ĭ": 138,
"ĭ": 139, "Į": 140, "į": 141, "İ": 142, "ı": 143, "IJ": 144, "ij": 145,
"Ĵ": 146, "ĵ": 147, "Ķ": 148, "ķ": 149, "ĸ": 150, "Ĺ": 151, "ĺ": 152,
"Ļ": 153, "ļ": 154, "Ľ": 155, "ľ": 156, "Ŀ": 157, "ŀ": 158, "Ł": 159,
"ł": 160, "¡": 161, "¢": 162, "£": 163, "¤": 164, "¥": 165, "¦": 166,
"§": 167, "¨": 168, "©": 169, "ª": 170, "«": 171, "¬": 172, "Ń": 173,
"®": 174, "¯": 175, "°": 176, "±": 177, "²": 178, "³": 179, "´": 180,
"µ": 181, "¶": 182, "·": 183, "¸": 184, "¹": 185, "º": 186, "»": 187,
"¼": 188, "½": 189, "¾": 190, "¿": 191, "À": 192, "Á": 193, "Â": 194,
"Ã": 195, "Ä": 196, "Å": 197, "Æ": 198, "Ç": 199, "È": 200, "É": 201,
"Ê": 202, "Ë": 203, "Ì": 204, "Í": 205, "Î": 206, "Ï": 207, "Ð": 208,
"Ñ": 209, "Ò": 210, "Ó": 211, "Ô": 212, "Õ": 213, "Ö": 214, "×": 215,
"Ø": 216, "Ù": 217, "Ú": 218, "Û": 219, "Ü": 220, "Ý": 221, "Þ": 222,
"ß": 223, "à": 224, "á": 225, "â": 226, "ã": 227, "ä": 228, "å": 229,
"æ": 230, "ç": 231, "è": 232, "é": 233, "ê": 234, "ë": 235, "ì": 236,
"í": 237, "î": 238, "ï": 239, "ð": 240, "ñ": 241, "ò": 242, "ó": 243,
"ô": 244, "õ": 245, "ö": 246, "÷": 247, "ø": 248, "ù": 249, "ú": 250,
"û": 251, "ü": 252, "ý": 253, "þ": 254, "ÿ": 255,
}
_BYTES_TO_CHARS = {v: k for k, v in _CHARS_TO_BYTES.items()}
def _bytes_to_chars(byte_sequence: bytes) -> str:
return "".join(_BYTES_TO_CHARS[byte] for byte in byte_sequence)
def _chars_to_bytes(char_sequence: str) -> list:
return list(bytes(_CHARS_TO_BYTES[char] for char in char_sequence))
@dataclass
class BolmoTokenizerConfig:
vocab_size: int
bos_token_id: int
pad_token_id: int
eos_token_id: int
bpe_token_end_id: int
special_tokens: list[str] = field(default_factory=lambda: [])
special_tokens_first: bool = True
original_identifier: Optional[str] = None
@classmethod
def bolmo(cls) -> "BolmoTokenizerConfig":
special_tokens = [
"<pad>",
"<bos>",
"<eos>",
"<bpe_token_end>",
]
return cls(
# *2 to accomodate fused boundary tokens
vocab_size=(len(special_tokens) + 256) * 2,
special_tokens=special_tokens,
bos_token_id=special_tokens.index("<bos>"),
pad_token_id=special_tokens.index("<pad>"),
eos_token_id=special_tokens.index("<bos>"),
bpe_token_end_id=special_tokens.index("<bpe_token_end>"),
original_identifier="allenai/dolma2-tokenizer",
)
def build(self):
return BolmoTokenizer(tokenizer_config=self)
class BolmoTokenizer(PreTrainedTokenizer):
TOKEN_ID_KEY = -1
def __init__(self, **kwargs):
tokenizer_config = kwargs.pop("tokenizer_config", BolmoTokenizerConfig.bolmo())
self.config = tokenizer_config
self.hf_tokenizer = AutoTokenizer.from_pretrained(tokenizer_config.original_identifier)
if self.config.special_tokens_first:
self.offset = len(tokenizer_config.special_tokens)
self.special_tokens_offset = 0
else:
self.offset = 0
self.special_tokens_offset = self.config.vocab_size - len(tokenizer_config.special_tokens)
self.byte_sequences = {}
for key, value in self.hf_tokenizer.get_vocab().items():
if key in self.config.special_tokens:
byte_sequence = [self.special_tokens_offset + self.config.special_tokens.index(key)]
elif value == self.hf_tokenizer.eos_token_id and self.eos_token_id is not None:
byte_sequence = [self.eos_token_id]
elif value == self.hf_tokenizer.bos_token_id and self.bos_token_id is not None:
byte_sequence = [self.bos_token_id]
elif value == self.hf_tokenizer.pad_token_id and self.pad_token_id is not None:
byte_sequence = [self.pad_token_id]
else:
byte_sequence = [self.offset + i for i in _chars_to_bytes(key)]
assert self.byte_sequences.get(value) is None
self.byte_sequences[value] = byte_sequence
self.byte_trie = {}
for token_id, byte_sequence in self.byte_sequences.items():
current_dict = self.byte_trie
for byte in byte_sequence[::-1]: # retrieved from the back so store in reverse order
if byte not in current_dict:
current_dict[byte] = {}
current_dict = current_dict[byte]
current_dict[BolmoTokenizer.TOKEN_ID_KEY] = token_id
self.add_bos_token = True
self.add_eos_token = False
self.padding_side = "left" # for generate
super().__init__(
bos_token=self.config.special_tokens[self.config.bos_token_id],
eos_token=self.config.special_tokens[self.config.eos_token_id],
pad_token=self.config.special_tokens[self.config.pad_token_id],
extra_ids=0,
)
@property
def bos_token_id(self):
return self.config.bos_token_id
@property
def eos_token_id(self):
return self.config.eos_token_id
@property
def pad_token_id(self):
return self.config.pad_token_id
@property
def bpe_token_end_id(self):
return self.config.bpe_token_end_id
@property
def vocab_size(self):
return self.config.vocab_size
def _convert_id_to_token(self, index):
if index < self.offset:
return self.config.special_tokens[index - self.special_tokens_offset]
if index >= self.offset + 256 and index < self.offset * 2 + 256:
# special token with fused boundary
return self.config.special_tokens[index - self.offset - 256] + "b"
return _BYTES_TO_CHARS[index - self.offset - 256 - self.offset] + "b" if index >= self.offset + 256 else _BYTES_TO_CHARS[index - self.offset]
def _convert_token_to_id(self, token):
if token in self.config.special_tokens:
return self.config.special_tokens.index(token)
if token in [x + "b" for x in self.config.special_tokens]:
# special token with fused boundary
return 256 + self.config.special_tokens.index(token[:-1])
if len(token) > 1 and token[-1] == "b":
return self.offset + 256 + _CHARS_TO_BYTES[token[0]]
else:
return self.offset + _CHARS_TO_BYTES[token]
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
return vocab
def expand_byte_ids(self, byte_ids: list[int], n_last: Optional[int] = None) -> list[int]:
# search in the byte tree for the longest matching token at every byte position
expanded_ids = []
for i in range(len(byte_ids)):
if n_last is not None and i < len(byte_ids) - n_last:
continue
current_dict = self.byte_trie
current_expansion = None
for i in range(i, -1, -1):
byte = byte_ids[i]
if byte == self.bpe_token_end_id:
# skip bpe token end markers, needed for generation
continue
if byte >= self.offset + 256:
# ignore fused boundary
byte -= self.offset + 256
try:
current_dict = current_dict[byte]
if BolmoTokenizer.TOKEN_ID_KEY in current_dict:
current_expansion = current_dict[BolmoTokenizer.TOKEN_ID_KEY]
except KeyError:
assert current_expansion is not None
break
expanded_ids.append(current_expansion)
return expanded_ids
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None, already_has_special_tokens: bool = False
) -> list[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return (
bos_token_id
+ ([0] * len(token_ids_0))
+ eos_token_id
+ bos_token_id
+ ([0] * len(token_ids_1))
+ eos_token_id
)
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None
) -> list[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
if token_ids_1 is not None:
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
return output
def _tokenize(self, text: str, **kwargs) -> list[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
tokens = self.convert_ids_to_tokens(self._bolmo_encode(text))
return tokens
def _patch_ids_to_byte_ids(self, input_ids: list[int]):
return [byte_token_id for token_id in input_ids for byte_token_id in self.byte_sequences[token_id]]
def _bolmo_encode(self, string: str, add_special_tokens=False):
input_ids = self.hf_tokenizer.encode(string, add_special_tokens=add_special_tokens)
return self._patch_ids_to_byte_ids(input_ids)
def _bolmo_decode(self, tokens: list[int], skip_special_tokens: bool = False) -> str:
return self._decode_to_bytes(tokens, skip_special_tokens=skip_special_tokens).decode("utf-8", errors="replace")
def _decode_to_bytes(self, tokens: list[int], skip_special_tokens: bool = False) -> bytes:
tokens_without_boundary = []
for token in tokens:
if token >= (self.offset + 256):
token -= self.offset + 256
tokens_without_boundary.append(token)
utf8_bytes = []
for token in tokens_without_boundary:
if token < self.offset:
if skip_special_tokens:
continue
else:
utf8_bytes.extend(self.config.special_tokens[token].encode("utf-8"))
else:
utf8_bytes.append(min(token - self.offset, 255))
return bytes(utf8_bytes)
def get_tokens_and_patch_lengths(self, original_input_ids: list[int], add_bos=False, strip_pad=False, skip_last=False):
if add_bos and self.bos_token_id is not None:
byte_tokens = [self.bos_token_id]
patch_lengths = [1]
else:
byte_tokens = []
patch_lengths = []
for idx, token in enumerate(original_input_ids):
# optionally skip last token to keep the length the same if add_bos=True
if skip_last and idx == len(original_input_ids) - 1:
break
token_byte_tokens = self._patch_ids_to_byte_ids([int(token)])
if strip_pad and all(t == self.pad_token_id for t in token_byte_tokens):
# skip padding tokens
continue
patch_lengths.append(len(token_byte_tokens))
byte_tokens.extend(token_byte_tokens)
return byte_tokens, patch_lengths
def convert_tokens_to_string(self, tokens: list[str]) -> str:
return self._bolmo_decode(self.convert_tokens_to_ids(tokens), skip_special_tokens=False) # type: ignore
def _decode(
self,
token_ids: Union[int, list[int]],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: Optional[bool] = None,
spaces_between_special_tokens: bool = True,
**kwargs,
) -> str:
if isinstance(token_ids, int):
token_ids = [token_ids]
return self._bolmo_decode(token_ids, skip_special_tokens=skip_special_tokens)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple[str]:
return () # type: ignore |