Create run.py
Browse files
run.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
!pip install -q transformers[torch] tokenizers datasets evaluate rouge_score sentencepiece huggingface_hub --upgrade
|
| 2 |
+
|
| 3 |
+
from huggingface_hub import notebook_login
|
| 4 |
+
notebook_login()
|
| 5 |
+
|
| 6 |
+
import nltk
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
import evaluate
|
| 9 |
+
import numpy as np
|
| 10 |
+
from transformers import T5Tokenizer, DataCollatorForSeq2Seq
|
| 11 |
+
from transformers import T5ForConditionalGeneration, Seq2SeqTrainingArguments, Seq2SeqTrainer
|
| 12 |
+
|
| 13 |
+
# Load and split the dataset
|
| 14 |
+
dataset = load_dataset("ajsbsd/openbsd-faq")
|
| 15 |
+
dataset = dataset["train"].train_test_split(test_size=0.2)
|
| 16 |
+
#dataset = load_dataset("csv", data_files="./JEOPARDY_CSV.csv")
|
| 17 |
+
#dataset = dataset["train"].train_test_split(test_size=0.2)
|
| 18 |
+
# Load the tokenizer, model, and data collator
|
| 19 |
+
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
| 20 |
+
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")
|
| 21 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
|
| 22 |
+
|
| 23 |
+
# We prefix our tasks with "answer the question"
|
| 24 |
+
prefix = "Please answer this question: "
|
| 25 |
+
|
| 26 |
+
# Define our preprocessing function
|
| 27 |
+
def preprocess_function(examples):
|
| 28 |
+
"""Add prefix to the sentences, tokenize the text, and set the labels"""
|
| 29 |
+
# The "inputs" are the tokenized answer:
|
| 30 |
+
inputs = [prefix + doc for doc in examples["question"]]
|
| 31 |
+
model_inputs = tokenizer(inputs, max_length=128, truncation=True)
|
| 32 |
+
|
| 33 |
+
# The "labels" are the tokenized outputs:
|
| 34 |
+
labels = tokenizer(text_target=examples["answer"], max_length=512, truncation=True)
|
| 35 |
+
model_inputs["labels"] = labels["input_ids"]
|
| 36 |
+
return model_inputs
|
| 37 |
+
|
| 38 |
+
# Map the preprocessing function across our dataset
|
| 39 |
+
tokenized_dataset = dataset.map(preprocess_function, batched=True)
|
| 40 |
+
|
| 41 |
+
# Set up Rouge score for evaluation
|
| 42 |
+
nltk.download("punkt", quiet=True)
|
| 43 |
+
metric = evaluate.load("rouge")
|
| 44 |
+
|
| 45 |
+
def compute_metrics(eval_preds):
|
| 46 |
+
preds, labels = eval_preds
|
| 47 |
+
|
| 48 |
+
# decode preds and labels
|
| 49 |
+
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
| 50 |
+
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
| 51 |
+
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
| 52 |
+
|
| 53 |
+
# rougeLSum expects newline after each sentence
|
| 54 |
+
decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]
|
| 55 |
+
decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels]
|
| 56 |
+
|
| 57 |
+
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
|
| 58 |
+
return result
|
| 59 |
+
|
| 60 |
+
# Set up training arguments
|
| 61 |
+
training_args = Seq2SeqTrainingArguments(
|
| 62 |
+
output_dir="./flan-t5-base-openbsd-faq",
|
| 63 |
+
evaluation_strategy="epoch",
|
| 64 |
+
learning_rate=3e-4,
|
| 65 |
+
per_device_train_batch_size=8,
|
| 66 |
+
per_device_eval_batch_size=4,
|
| 67 |
+
weight_decay=0.01,
|
| 68 |
+
save_total_limit=3,
|
| 69 |
+
num_train_epochs=5,
|
| 70 |
+
predict_with_generate=True,
|
| 71 |
+
push_to_hub=False
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Set up trainer
|
| 75 |
+
trainer = Seq2SeqTrainer(
|
| 76 |
+
model=model,
|
| 77 |
+
args=training_args,
|
| 78 |
+
train_dataset=tokenized_dataset["train"],
|
| 79 |
+
eval_dataset=tokenized_dataset["test"],
|
| 80 |
+
tokenizer=tokenizer,
|
| 81 |
+
data_collator=data_collator,
|
| 82 |
+
compute_metrics=compute_metrics
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Train the model
|
| 86 |
+
trainer.train()
|
| 87 |
+
|
| 88 |
+
trainer.push_to_hub()
|