--- language: en license: mit tags: - sentiment-analysis - imdb - bert - transformers - text-classification model-index: - name: sentiment-bert-imdb results: - task: type: text-classification name: Sentiment Analysis dataset: name: IMDB Movie Reviews type: imdb metrics: - type: accuracy value: 0.93 # Replace with actual score if available --- # Sentiment-BERT-IMDB A BERT-based model fine-tuned on the IMDB movie reviews dataset for **binary sentiment classification** (positive/negative). This model is intended for quick deployment and practical use in applications like review analysis, recommendation systems, and content moderation. ## Model Details - **Architecture**: `bert-base-uncased` - **Task**: Sentiment classification (positive vs. negative) - **Dataset**: [IMDB](https://ai.stanford.edu/~amaas/data/sentiment/) - **Classes**: `positive`, `negative` - **Tokenizer**: `bert-base-uncased` ## How to Use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model = AutoModelForSequenceClassification.from_pretrained("HrishikeshDeore/sentiment-bert-imdb") tokenizer = AutoTokenizer.from_pretrained("HrishikeshDeore/sentiment-bert-imdb") nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) result = nlp("This movie was absolutely fantastic!") print(result)